ارائه روش اصلاح در اندازه‌گیری میزان پروتئین ادرار ۴۴ ساعته

زهره خاتمی، دکتر صغری روحی، ازم نامی، نیژهت شاکری، دکتر محمد عباسی

مرکز تحقیقات و آزمایشگاه‌های رفاه‌سازی ایران، آزمایشگاه بیوشیمی، وزارت بهداشت، درمان و آموزش پزشکی

چکیده

مقدمه: با توجه به اهمیت استانداردگیری مقدار پروتئین ادرار در ۲۴ ساعت در تشخیص پیشگیری و پیگیری وضعیت بیماران در تاریکی‌های کلیوی و نیاز به مقادیر صحیح و دقیق آن جهت تغییر روند درمانی، به روش‌های مورد استفاده در آزمایشگاه‌های تشخیص طبی ایران مورد بررسی و مقایسه قرار گرفت.

مواد و روش‌ها: این سه روش عبارت بودند از:
- روش ۱ - روش استاندارد کلرولاتیک (TCA) (کدترین سنتی در طول موج ۴۰۰ نانومتر)
- روش ۲ - روش استاندارد کلرولاتیک (TCA) (کدترین سنتی در طول موج ۴۰۰ نانومتر)
- روش ۳ - روش استاندارد Sulfosalicylic (کدترین سنتی در طول موج ۴۰۰ نانومتر)

این ارزیابی با استفاده از نمونه‌های مدل و نمونه‌های ادرار جمعیت افراد بیمار و سالم و موارد کالیبراسیون منتفیت انجام شده است.

یافته‌ها: نتایج حاصله بیانگر کیفیت مناسب روش ۱ برای اندازه‌گیری غلظت‌های ۰.۵-۲ mg/۱۰۰ نانومتر و حداقل تأثیرپذیری در استفاده از موارد کالیبراسیون متفاوت می‌باشد. در حالیکه روش ۲ پایین ترین کیفیت را در سنگش مقادیر کمتر از ۲ mg/۱۰۰ نانومتر داشته و در استفاده از موارد کالیبراسیون مختلف تأثیرپذیری تا حدی بیشتری را داشته است. روش ۳ نیز دارای کیفیت مناسب در اندازه‌گیری غلظت‌های ۱۰۰-۱۰۰۰ mg/۱۰۰ نانومتر بوده و در استفاده از موارد کالیبراسیون منتفیت، تأثیرپذیری پایین‌تر از روش ۲ را داشته است.

نتیجه‌گیری و توصیه‌ها: با توجه به نتایج فوق بیشترین میزان استفاده از روش SSA در طول موج ۴۰۰ نانومتر به‌منظور اندازه‌گیری روند و از روش TCA در طول موج ۶۰۰ نانومتر به‌منظور تغییر روند به‌منظور استفاده شود.
مواد و روش‌ها

امور و موارد استفاده - قرن گذشته نوری کلیه آزمایش‌ها با استفاده از فیلتر فیبری ایجاد شد. مصرف کروتوکارتر چهار همراه با بستن مقدار احتمال شد. موارد اولی شامل اسید نری کروتوکارتر، اسید سولفونامیدیل، کلوئور سدیم با خلقوس‌کننده نتیجه‌گیری‌های از شرکت مربوط به سه کنترل کالیبراتورهای مورد استفاده عبارتند از:

- محصول گیاهی کوار میکرو سرم (Fraction V) رفت و ۲۵ mg/dl، شرکت بی‌هیاته مدال: ۲۳۸ mg/dl نر ۱۹۷۹ ۴۹۸-۲۳، شرکت بهربیار مالامین با شماره سری میکرو ۲۵۷ mg/dl نر ۱۹۸۵ ۴۹۳-۲۵، وقت مورد استفاده ۵۵ mg/dl، شرکت بی‌هیاته مدال: ۲۳۸ mg/dl نر ۱۹۷۹ ۴۹۸-۲۳، شرکت بهربیار مالامین با شماره سری میکرو ۲۵۷ mg/dl نر ۱۹۸۵ ۴۹۳-۲۵، وقت مورد استفاده ۵۵ mg/dl، شرکت بی‌هیاته مدال: ۲۳۸ mg/dl نر ۱۹۷۹ ۴۹۸-۲۳، شرکت بهربیار مالامین با شماره سری میکرو ۲۵۷ mg/dl نر ۱۹۸۵ ۴۹۳-۲۵، وقت مورد استفاده ۵۵ mg/dl، شرکت بی‌هیاته مدال: ۲۳۸ mg/dl نر ۱۹۷۹ ۴۹۸-۲۳، شرکت بهربیار مالامین با شماره سری میکرو ۲۵۷ mg/dl نر ۱۹۸۵ ۴۹۳-۲۵، وقت مورد استفاده ۵۵ mg/dl، شرکت بی‌هیاته مدال: ۲۳۸ mg/dl نر ۱۹۷۹ ۴۹۸-۲۳، شرکت بهربیار مالامین با شماره سری میکرو ۲۵۷ mg/dl نر ۱۹۸۵ ۴۹۳-۲۵، وقت مورد استفاده ۵۵ mg/dl، شرکت بی‌هیاته مدال: ۲۳۸ mg/dl

اماس اندازه‌گیری پروتئین در این بیمار به صورت کمی نیمه کمپوزیت برای ویژه بررسی‌های ایمنوژنتیک گردید که تنها استفاده شده می‌باشد.

روش‌های مختلف در تعیین اندازه‌گیری میکرو نتایج آزمایشات از طریق مقایسه و Dilena مورد استفاده قرار می‌گیرند. مقایسه و Dilena مورد استفاده قرار می‌گیرند.

امامی: م. لدنی

همان‌طور که ذکر شد با استفاده از روش‌های ۱-۲ اسید تری کلرآمیش در طول موج ۴۵۰ نانومتر، ۲ اسید تری کلرآمیش در طول موج ۴۴۰، ۳ اسید سولفونامیدیل، ۴ اسید سولفونامیدیل.

نتایج مورد توجه در معمول روش اصلی عبارتند از:

1- کیفیت بالا بی‌تولید نتایج آزمایش
2- توجه به روش‌های راجی اندازه‌گیری
3- سهولت درستی به مواد و ابزار نیاز
4- امکانات بیمار در تقلید هزینه‌های آزمایش

در ضمن در بررسی‌های غواه عمده کیفیت تمام شد، دقیقه اجرای آزمایش‌های کالیبراتورهای مناسب شاتین، کیفیت گردیده و سپس روش اصلی انتخاب شده است (۴).
روش کار

- روش اسید تری کلرواستیک 12/5 درصد در طول موج TCA 405 نانومتر (5).

- 12/5 گرم از پویدر TCA را در مقدار کمی ابت مقتدر حلال کرد.

جدول شماره 1 - روش اسید تری کلرواستیک 12/5 درصد در طول موج 405 نانومتر

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>St</th>
<th>Bt</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقدار اکسیسین 25 دقیقه در حرارت اطلاق است. نمونه‌های شاهد تست بعد از این مدت در دور سانتی‌مترز می‌گردد. جذب نوری همه یکسان می‌باشد. نمونه‌های تابعی در طول موج 240 نانومتر با استفاده از فرمول زیر غلظت پروتئین موجود در نمونه‌ها محاسبه می‌شود.

\[
\text{mg/dl} = \frac{\text{Con}_T - \text{Con}_0}{\text{D_St} \times \text{Con}_0}
\]

لازم به ذکر است که این روش تا 50 گیگولی می‌باشد باید انتخاب نمونه‌ها از ادرار یا اسماندار باید از طرف رفت و گرد سه میلی‌گرم نمونه ادرار فرمول می‌شود. این نمونه‌ها به هر سه روش تعیین نمونه شده و برای محاسبه فرمول می‌شود.

روش مقایسه و ارزیابی

با انجام آزمایش در غلظت‌های مختلف کترل‌های ذکر شده، میزان ضریب احتراف، درصد نوسان، دامنه نجهیز و نوع کلریکسیون مناسب هر روش تعیین شد. پس از تعیین کفیت عملکردی هر روش، 15 نمونه ادرار افراد بیمار و 19 نمونه ادرار افراد سالم با هر روش تعیین مقدار شده و نتایج با استفاده از تست‌های آماری مورد مقایسه قرار گرفت. با مشاهده نتایج عضلانی روش TCA در طول موج 405 نانومتر برای تعیین مقادیر پایین پروتئین (100-200 mg/l)، 30 نمونه ادرار افراد در سالم و 28 نمونه ادرار افراد بیمار با سه گیگولی طبیعی کل از 5 سال و بودن تظاهرات بیماری کلیو مورد سنجش و بررسی قرار داده شد.
یافته‌ها

مجموعه یافته‌های این مطالعه در جدول شماره ۱ تا ۳ به‌ترتیب در آمده است:

جدول شماره ۱ - نکراپذیری غونه کنترل عادی (setpoint نوری مشخص شده‌اند).

<table>
<thead>
<tr>
<th>slope</th>
<th>SSA</th>
<th>slope</th>
<th>TCA 400 nm</th>
<th>slope</th>
<th>TCA 200 nm</th>
<th>_mg/l</th>
<th>غلظت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>X</td>
<td>0.05</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>X</td>
<td>0.035</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>X</td>
<td>0.025</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>X</td>
<td>0.018</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>X</td>
<td>0.015</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>X</td>
<td>0.015</td>
</tr>
</tbody>
</table>

نتایج از نوسان دوره‌های سی و نوسان دوره‌های نزولی به‌صورت نشان‌دهنده آ-tabیت نشان‌دهنده آ-opیت.
جدول 2- مقایسه پرانتکس فاکتورهای حاصل از استفاده، کالیبراتورهای متفاوت در ایجاد گریز پروتئین‌های ادراری

| F.SSA | F.TCA 620 | F.TCA 620-5 | mg/l | نوع کالیبراتور | استاندارد آب‌های
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67.93</td>
<td>85.82</td>
<td>32.39</td>
<td>160</td>
<td>F</td>
<td>550</td>
</tr>
<tr>
<td>100.18</td>
<td>85.47</td>
<td>37.41</td>
<td>550</td>
<td>F</td>
<td>550</td>
</tr>
<tr>
<td>236.65</td>
<td>90.88</td>
<td>42.36</td>
<td>375</td>
<td>F</td>
<td>375</td>
</tr>
<tr>
<td>242.21</td>
<td>92.88</td>
<td>42.36</td>
<td>375</td>
<td>F</td>
<td>375</td>
</tr>
<tr>
<td>236.39</td>
<td>103.38</td>
<td>39.72</td>
<td>288</td>
<td>Set point</td>
<td>X</td>
</tr>
<tr>
<td>242.21</td>
<td>113.38</td>
<td>39.72</td>
<td>288</td>
<td>Set point</td>
<td>X</td>
</tr>
<tr>
<td>236.65</td>
<td>113.61</td>
<td>41.49</td>
<td>343</td>
<td>X</td>
<td>SD</td>
</tr>
<tr>
<td>242.21</td>
<td>113.61</td>
<td>41.49</td>
<td>343</td>
<td>X</td>
<td>SD</td>
</tr>
<tr>
<td>CV=2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول شماره 3- میانگین و دامنه نتایج به دست آمده از آزمایش 11 شانه سالم و 15 غونه بیمار با استفاده از کالیبراتورهای مختلف در سه روش

<table>
<thead>
<tr>
<th>Albumin</th>
<th>Pereipath</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA</td>
<td>TCA 620</td>
</tr>
<tr>
<td>TCA 620-5</td>
<td></td>
</tr>
</tbody>
</table>

بحث

همانگونی که از حدود 1 میلی‌گرم روش در TCA با 260 میلی‌گرم روش در TCA در طول موج 405 nm حاصل گردیده‌است که با داشتن به دست آمده از پرانتکس F و TCA در حدود 400 و 470 mg/l در طول موج 405 nm محاسبه می‌شود. این مقدار به دست آمده از نتایج آزمایشات تحقیقاتی در طول موج 405 nm را با دقت 20 و 40 mg/l تأیید شده است که در آزمایشات تحقیقاتی این مقدار در حدود 400 و 470 mg/l باید با دقت 20 و 40 mg/l تأیید شده است.

مقدار کیفیت مشاهده شده در تحقیقات تأیید کند. امکانات پرانتکس F و TCA در حدود 400 و 470 mg/l تأیید شده است که در آزمایشات تحقیقاتی این مقدار در حدود 400 و 470 mg/l باید با دقت 20 و 40 mg/l تأیید شده است.
بیولوژیک در میزان دفع پروتئین از طریق ادرار، 12 درصد عدم صحیح در اندازه‌گیری غلظت‌های کمتر از 50 mg/l قابل اعتماد است.

نتایج حاصل از چندین مسئله متفاوت به روی اسید سولفوسامینیل سیکسیک بنی از دو روش دیگر تحت تأثیر ۳ نوع کالیبراتور می‌باشد. سولفوسامینیل سیکسیک در صورت حذف کالیبراسیون آلمانی در روشه اسید سولفوسامینیل، ضریب انحراف‌میانگین در 10 درصد موارد سولفوسامینیل به صورت مناسب ضریب انحراف‌میانگین در روشه TCA در 70 درصد موارد سولفوسامینیل به صورت مناسب ضریب انحراف‌میانگین کالیبراسیون استفاده می‌شود.

نتایج ذکر شده در جدول ۲ نشان می‌دهد که در مقایسه با روشه TCA، روشه TCA در 10 درصد موارد کمترین ضریب انحراف‌میانگین کالیبراسیون‌های مختلف را نشان می‌دهد. (به امضاء فاکتورهای به دست آمده برای هر و در فاکتورهای مورد بررسی قرار گرفته در این بررسی اختلاف معنی‌دار می‌یابد.

الف) SSA

لذا با توجه به نتایج ذکر شده، بیشترین می‌شود که روش به لحاظ نادیده گرفتن از نوع کالیبراسیون و عدم توانایی ذرانت در غلظت‌های بالای و کمترین ارتباط خطي بین غلظت و جدید نویسی کلاً مسوح اعلام شده و در راستای همکاری نتایج بیش آزمایش‌ها روش TCA در انتخاب نماینده برترین ادرار TCA 24 ساعته استفاده شود. ضمناً با توجه به توانایی روش در طول موج 200 نانومتر برای سنگین مفیدی کم از پروتئین از این روش برای بررسی و ضریب کلیوی جمع‌های میسر به میزان‌های کلیوی مانند دیابیت و در هیچ‌کدام بیماری‌های تنشیزوری استفاده شود. نتایج به دست آمده از آزمایش 28 نوع ادرا افراد دیابتی برای بیان به دست آمده از 5 صلیب و بدون بیماری کلیوی و 28 نوع افراد سالم در جدول ۱ نشان داده شده است. همه اعداد به دست آمده توانمندی روش TCA در ضریب سوژ 200 نانومتر را در اندازه‌گیری غلظت‌های پایین پروتئین شناس می‌دهد.
4. Logan JE. Principles and recommendations on evaluation of reagent sets in health laboratories with limited resources. WHO/LSB/802.