Multinomial Response Models, for Modeling and Determining Important Factors in Different Contraceptive Methods in Women

ABSTRACT

Different aspects of multinomial statistical Modelings and its classifications has been studied so far. In these type of problems \(Y \) is the qualitative random variable with \(T \) possible states which are considered as classifications. The goal is prediction of \(Y \) based on a random Vector \(X \in \mathbb{R}^m \). Many methods for analysing these problems were considered. One of the modern and general method of classification is Classification and Regression Trees (CART). Another method is recursive partitioning techniques which has a strange relationship with nonparametric regression. Classical discriminant analysis is a standard method for analyzing these type of data. Flexible discriminant analysis method which is a combination of nonparametric regression and discriminant analysis and classification using splines that includes least square Regression and Additive cubic splines. Neural network is an advanced statistical Method for analyzing these types of data.

In this paper properties of multinomial logistics regression were investigated and this method was used for modeling effective factors in selecting contraceptive methods in Ghom province for married women age 15-49.

The response variable has a tetranomial distribution. The levels of this variable are: nothing, pills, traditional and a collection of other contraceptive methods.

A collection of significant independent variables were: place, age of women, education, history of pregnancy and family size. Menstruation age and age at marriage were not statistically significant.

Key Words: Multinomial response model; contraceptive; classification and regression trees.
روش و مواد

زنان همسردار ۱-۵۹ ساله استان قم که مشکوک به حاملگی اند و حاملگی نیستند، جامعه آماری این تحقیق را تشکیل می‌دهد. اطلاعات مرئی به طور شرط از ۱۹۸۷ زنان همسردار ۱-۵۹ ساله به عنوان نمونه از جامعه مذکور را تشکیل می‌دهد. اطلاعات مربوط به تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جمله فاکتورهای انسانی و جغرافیایی، از جمله تعداد بارداری و تعداد بارداری از جملة...
متغیر پایش دارای $T + 1$ حالت است به تعداد $(T + 1)$ جفت از پایش‌ها برای ساختن مدل لجیستک خوراکی درست است. اگر را (Baseline-category logit)
تابع لجیستک طبقه‌بندی شده باشد، منشین بکی، مانند لجیستک خوراکی است. استنباط هستند. اگر بردار X_0 که بردار $P + 1$ مقدار از متغیرهای مستقل با 1 بوده و بردار Y مقدار ثابت باشد و اگر مربوط مرجع را $Y = 1$ نشان دهیم:

$$
\pi(x) = \ln \left[\frac{P(Y=1|X)}{P(Y=0|X)} \right] = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p = \beta x
$$

$r = 0, \ldots, T$

فرض کلی احتمال شرطی در مدل به یک منجمه جنگل‌هایی

$$
\pi_r(x) = P[Y = r|X] = \frac{e^{g_r(x)}}{\sum_{r=0}^{T} e^{g_r(x)}}
$$

$r = 0, \ldots, T$

بردار x که در نظر گرفته می‌شود هر همبستگی ρ برای تصادفی $X \in \mathbb{R}^{m}$ مشاهده می‌شود. در این تحقیق از مدل رگرسیون لجیستک، مدل یافته که برای مدل‌های مربوط به این ردیابی در تحقیق از استفاده می‌کنیم. تابع درست نمایی برای یک تصادفی

$$
\pi(x) = \prod_{j=1}^{K} \pi_{j}(x_j) \prod_{j=1}^{K} \pi_{j}(x_j)
$$

در آن $y_{ij} = 1$ و $y_{ij} = 0$ نشان دهنده مشاهده iام و jام است. در تحقیق احتمال در $X = (x_1, \ldots, x_m)$ برای x_1, \ldots, x_m نشان دهنده تصادفی $X \sim \mathcal{N}(\mu, \Sigma)$ مشاهده‌های اولیه گسترشی که برای آماره‌های تصادفی $Y \sim (Y_1, \ldots, Y_T)$ در تعریف r را در نظر می‌گیریم.

$$
\pi_r(y) = \frac{1}{0.1 \ldots n} \prod_{i=0}^{n} \frac{1}{0.1 \ldots n} \pi_{j}(y_j)
$$

در غیر اینصورت

بنابراین $y = 1, \ldots, T$

راه در نظر گرفته می‌شود. در نتایج

$$
\pi_r(y) = \prod_{i=0}^{n} \frac{1}{0.1 \ldots n} \pi_{j}(y_j)
$$

منشین که در آن $n = \sum_{i=1}^{T} \pi_{j}(y_j)$ یک از طبقات به این آماره‌های مستقل، بردار موجودی با مولفه

$$
\sum_{i=1}^{T} \pi_{j}(y_j)
$$

برای داده‌های مشاهده، نمونه‌بردار $Y = (Y_1, \ldots, Y_T)$ تعریف می‌شود. نمونه‌بردار $Y = (Y_1, \ldots, Y_T)$ تعریف می‌شود:

$$
P[Y = (y_1, \ldots, y_T)] = \frac{1}{n!} \prod_{i=1}^{T} \pi_{j}(y_j)
$$

برای داده‌های مشاهده، نمونه‌بردار

$$
\sum_{i=1}^{T} \pi_{j}(y_j)
$$

برای داده‌های مشاهده، نمونه‌بردار

$$
\prod_{i=1}^{T} \pi_{j}(y_j)
$$

برای داده‌های مشاهده، نمونه‌بردار

$$
\sum_{i=1}^{T} \pi_{j}(y_j)
$$

برای داده‌های مشاهده، نمونه‌بردار

$$
\prod_{i=1}^{T} \pi_{j}(y_j)
$$
یافته‌های تحقیق

انجام مدل‌های انتخاب شده و دستگاه‌های انتخاب کننده، با وارد شدن به مدل وسیع‌تری از داده‌ها و محاسبات بالا در دستگاه‌های بزرگ، انتخاب از بالای بهترین براساس شاخص فیبری می‌گذارند. انتخاب سه بندینه برای اینکه پیش‌بینی بهتری نمایند، این روش بهترین می‌گذارد که برای مدل‌هایی وسیع‌تری انتخاب شده باشد. استفاده از پرپراک در این مدل‌ها، با وارد شدن به مدل می‌تواند باعث افزایش دقت در این مدل‌ها شود.

table

<table>
<thead>
<tr>
<th>y</th>
<th>Coef.</th>
<th>Std. Err.</th>
<th>RRR</th>
<th>Std. Err.</th>
<th>z</th>
<th>Pr>z</th>
<th>c</th>
<th>Pr>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX1_2</td>
<td>-1.1264581</td>
<td>0.2025595</td>
<td>0.8012111</td>
<td>0.1785123</td>
<td>-0.624</td>
<td>0.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_2</td>
<td>0.6782388</td>
<td>0.2454472</td>
<td>1.970503</td>
<td>0.4835644</td>
<td>2.763</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_3</td>
<td>0.6010354</td>
<td>0.3589217</td>
<td>1.284039</td>
<td>0.5546746</td>
<td>2.375</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_4</td>
<td>1.945853</td>
<td>0.7841642</td>
<td>6.369958</td>
<td>4.39179</td>
<td>2.949</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>3.7552077</td>
<td>0.0625645</td>
<td>1.455294</td>
<td>0.0943972</td>
<td>5.743</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>-0.462034</td>
<td>0.0995807</td>
<td>0.001525</td>
<td>0.003199</td>
<td>2.083</td>
<td>0.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x7</td>
<td>-0.1579914</td>
<td>0.050684</td>
<td>0.887052</td>
<td>0.013410</td>
<td>-1.810</td>
<td>0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX7_2</td>
<td>1.5041234</td>
<td>0.0685553</td>
<td>1.162001</td>
<td>0.077332</td>
<td>2.244</td>
<td>0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.524717</td>
<td>0.5897293</td>
<td>1.56551</td>
<td>0.00101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>y</th>
<th>Coef.</th>
<th>Std. Err.</th>
<th>RRR</th>
<th>Std. Err.</th>
<th>z</th>
<th>Pr>z</th>
<th>c</th>
<th>Pr>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX1_2</td>
<td>-0.705651</td>
<td>0.188584</td>
<td>0.493080</td>
<td>0.063124</td>
<td>-3.742</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_2</td>
<td>-0.893259</td>
<td>0.2282901</td>
<td>2.705135</td>
<td>0.5104206</td>
<td>4.305</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_3</td>
<td>1.490668</td>
<td>0.3181898</td>
<td>4.095603</td>
<td>1.302848</td>
<td>4.330</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_4</td>
<td>2.050201</td>
<td>0.7845434</td>
<td>7.769333</td>
<td>6.095526</td>
<td>2.613</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>1.721262</td>
<td>0.0906959</td>
<td>1.187828</td>
<td>0.070125</td>
<td>2.211</td>
<td>0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>0.563255</td>
<td>0.3153785</td>
<td>39.0067</td>
<td>123.3092</td>
<td>1.162</td>
<td>0.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x7</td>
<td>-0.048211</td>
<td>0.12284</td>
<td>0.952904</td>
<td>0.011705</td>
<td>-3.227</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX7_2</td>
<td>-0.2973968</td>
<td>0.1608083</td>
<td>0.7432024</td>
<td>0.195098</td>
<td>-1.843</td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7080969</td>
<td>0.5544427</td>
<td>1.277</td>
<td>0.202</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3

<table>
<thead>
<tr>
<th>y</th>
<th>Coef.</th>
<th>Std. Err.</th>
<th>RRR</th>
<th>Std. Err.</th>
<th>z</th>
<th>Pr>z</th>
<th>c</th>
<th>Pr>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX1_2</td>
<td>-0.3763273</td>
<td>0.1816085</td>
<td>0.6843777</td>
<td>0.1248521</td>
<td>-2.072</td>
<td>0.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_2</td>
<td>0.8300458</td>
<td>0.2144275</td>
<td>2.293424</td>
<td>0.451773</td>
<td>3.871</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_3</td>
<td>1.282053</td>
<td>0.3165503</td>
<td>3.532669</td>
<td>1.125353</td>
<td>3.362</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX6_4</td>
<td>1.927798</td>
<td>0.7731667</td>
<td>6.874355</td>
<td>5.315023</td>
<td>2.493</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>0.508259</td>
<td>0.0555514</td>
<td>1.659073</td>
<td>0.0583229</td>
<td>2.952</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>0.04982085</td>
<td>0.1773585</td>
<td>0.0064203</td>
<td>0.011398</td>
<td>-2.843</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x7</td>
<td>-0.0563252</td>
<td>0.0124049</td>
<td>0.9452317</td>
<td>0.011725</td>
<td>-4.541</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX7_2</td>
<td>1.1172025</td>
<td>0.0530791</td>
<td>1.119299</td>
<td>0.061905</td>
<td>2.038</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.8951867</td>
<td>0.5489819</td>
<td>1.271</td>
<td>0.203</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Outcome y=0 is the comparison group)
در این مدل زبانی که هیچ روش پیشگیری را استفاده تمی کنید (سطح صفر) به عنوان طبقه مرحله در نظر گرفته شده است و سپس تابع ارائه به ازای سه روش دیگر متغیر پاسخ خواهیم داشت. با توجه به فرضیه مدل سازی کار به کار آمده تابع ارتباط آنتروپی را به پاسخ داده‌اند.

حالا به بررسی افراد دیگر از سه نوع مستقل و نسبت‌های بخش آنها می‌پردازیم.

منطقه سکوئن (1)

نتایج نشان می‌دهد که سئوستاده‌ای از روش‌های قرض به هیچ روش در زبان روستایی نسبت به همین شانس در زبان شهری حس می‌دارد. 15 ساله استفاده که در مجموعه سایر روش‌ها با و نسبت به سه جمله استفاده از روش‌های قرض و مجموعه سایر روش‌ها نسبت به روش‌های سه نسبت به با پیش‌بینی

سیستم ساخت (2)

تعداد افراد خانواده (2)

تعداد افراد خانواده به عنوان متغیر پیشنهادی در نظر گرفته شده است. شاخص نشان می‌دهد که افراد خانواده بیشتر استفاده از قرض‌های خانواده با زبان‌های مختلف استفاده از روش‌های سه.

سن مادر (3)

و داشتن سابقه حاملگی (4)

بین سن مادر و داشتن سابقه حاملگی اثر مثبت مشاهده شده است. سن به عنوان متغیر پیشنهادی در نظر گرفته شده است و ارتباط خطی آن در حضور داشتن سابقه حاملگی بر روی لجیس با هر نوع می‌شود. در حال حاضر بیشتر نسبت بخت‌های روش‌های قرضی و مجموعه سایر روش‌ها نسبت به روش‌های سه نسبت به بررسی شانس استفاده از روش‌های قرضی زن‌ها و استفاده از جامعه مذکور کمتر است.

سواز زن (6)

طبق تعیین زمان به جهت گروه آموزشی است. بنابراین سه ضریب برای مقایسه سه مقطع از سواز با مقطع مرحله و از جانب حاکمیت 9 توسط دانشجویان 15 ساله مشاهده می‌شود.

وبازدادری زنان با تاریخ‌های مختلف و تفاوت‌های مثبت
نتایج نشان می‌دهد که در بین زنان ۱۵ ساله همسردار
استان قم نسبت شانس استفاده از روش‌های سنگین به هیچ
روش تفاوت معنی داری در بین زنانی که حاملگی نداشتند
نسبت به زنانی که حاملگی داشته‌اند ندارد.

برای زنان ۱۵ ساله و بیشتر شانس استفاده از روش‌های
قرص نسبت به هیچ روشی در بین زنانی که سابقه حاملگی
نداشته‌اند نسبت به زنانی که حامله شدند تفاوت معنی‌داری
وجود ندارد.

برای زنان ۴۰ ساله و بیشتر شانس استفاده از روش‌های
سنگین و مجموعه سایر روش‌ها نسبت به هیچ روش تفاوت
معنی داری در بین زنانی که سابقه حاملگی نداشتند نسبت به
زنایی که داشتند حامله ندارند، وجود ندارد.

برای سایر گروه‌های سنی (حدوداً گروه‌های سنی ۱۶ تا
۳۵ ساله) تفاوت معنی‌داری در شانس استفاده از هر یک از

| سن مادر (سال) | نسبت بجای‌گیری
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۲۰</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>۲۵</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۳۰</td>
<td>۰/۱۱</td>
</tr>
<tr>
<td>۳۵</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>۴۰</td>
<td>۰/۹</td>
</tr>
<tr>
<td>۴۵</td>
<td>۰/۸</td>
</tr>
</tbody>
</table>

| سن دختر (سال) | فاصله اضطراری
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۴</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۱۳</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۱۱</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۹</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۰/۱۷</td>
</tr>
</tbody>
</table>
روش‌ها خیلی کم می‌باشد. در مورد روش‌های سه‌تایی حدود ۲۳ سال‌گی احتمال انتخاب این روش تقییاً وجود دارد ولی بعد از این سن این روش پیش‌گیری نیز روند کاهش شدیدی را نشان می‌دهد. بنابراین اگر نمونه‌گیری در کل زنده که تنها به حاصل حامیه دارد و به‌دست‌آورده با احتمال خیلی زیادی از هیچ روشی برای جلگیری از بارداری استفاده گردد، احتمال این که روند‌افزایشی با بالا رفتن سن زن‌های ناکافی است.

منابع

1- Agresti Alan, Categorical data analysis, John Willey & Sons, USA 1990.