Multinomial Response Models, for Modeling and Determining Important Factors in Different Contraceptive Methods in Women

ABSTRACT

Different aspects of multinomial statistical Modelings and its classifications has been studied so far. In these type of problems Y is the qualitative random variable with T possible states which are considered as classifications. The goal is prediction of Y based on a random Vector X ∈ IR^n. Many methods for analysing these problems were considered. One of the modern and general method of classification is Classification and Regression Trees (CART). Another method is recursive partitioning techniques which has a strange relationship with nonparametric regression. Classical discriminant analysis is a standard method for analyzing these type of data. Flexible discriminant analysis method which is a combination of nonparametric regression and discriminant analysis and classification using splines that includes least square Regression and Additive cubic splines. Neural network is an advanced statistical Method for analyzing these types of data.

In this paper properties of multinomial logistics regression were investigated and this method was used for modeling effective factors in selecting contraceptive methods in Ghom province for married women age 15-49.

The response variable has a tetranomial distribution. The levels of this variable are: nothing, pills, traditional and a collection of other contraceptive methods.

A collection of significant independent variables were: place, age of women, education, history of pregnancy and family size. Menstruation age and age at marriage were not statistically significant.

Key Words: Multinomial response model; contraceptive; classification and regression trees.
\(\alpha_T (d_j) = \sum_{x=1}^{n} \alpha_k (y_j - \bar{y}) \)

\(K = 1 \ldots n, \quad j = 1 \ldots T \)

\(\beta = (\beta_0, \beta_1, \beta_2, \ldots, \beta_T) \)

\(\gamma = (\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_T) \)

\(y = (y_0, y_1, y_2, \ldots, y_T) \)

\(y = (y_0, y_1, y_2, \ldots, y_T) \)

\(\sum_{y=0}^{y=T} n \cdot \sum_{x=1}^{x=n} \alpha_k (y_j - \bar{y}) \)

\(T \)
یافته‌های تحقیق

این اقدام به لحاظ تکنیک جهان‌آوری بشری شده و باعث تغییر در کمیت و سبیله پرس‌های ارزیابی تغییرات مستقل بر روی تبادل زمان و میزان انتخاب زمان بحرانی و انتخاب مدل و تکنیک بر اساس میزان کم می‌گذارد. انتخاب مدل تکنیک بر اساس روش تعداد زمان به کم می‌گذارد. انتخاب مدل تکنیک بر اساس روش تعداد زمان به کم می‌گذارد. انتخاب مدل تکنیک بر اساس روش تعداد زمان به کم می‌گذارد. انتخاب مدل تکنیک بر اساس روش تعداد زمان به کم می‌گذارد.

表达式的导数和积分计算

$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

表达式的性质和属性

1. **导数的性质**
 - **线性**：对于所有函数 f(x) 和 g(x)，有
 $$\frac{d}{dx}(af(x) + bg(x)) = a\frac{df}{dx} + b\frac{dg}{dx}$$
 - **常数**：对于常数 c，有
 $$\frac{d}{dx}(cf(x)) = c\frac{df}{dx}$$
 - **乘积**：对于函数 f(x) 和 g(x)，有
 $$\frac{d}{dx}(fg(x)) = f(x)\frac{dg}{dx} + g(x)\frac{df}{dx}$$
 - **商**：对于函数 f(x) 和 g(x)，有
 $$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{df}{dx} - f(x)\frac{dg}{dx}}{g^2(x)}$$

2. **积分的性质**
 - **线性**：对于所有函数 f(x) 和 g(x)，有
 $$\int (af(x) + bg(x)) \, dx = a\int f(x) \, dx + b\int g(x) \, dx$$
 - **常数**：对于常数 c，有
 $$\int cf(x) \, dx = c\int f(x) \, dx$$
 - **和**：对于函数 f(x) 和 g(x)，有
 $$\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx$$

表 1:

| y | Coef. | Std. Err. | RRR | Std. Err. | z | P>|z| |
|---|-------|-----------|-----|-----------|---|------|
| 1 | 1x1_2 | -1.294581 | 0.205695 | 0.891211 | 0.175815 | -0.624 | 0.533 |
| | 1x6_2 | 0.782888 | 0.244547 | 2.207503 | 0.485644 | 2.783 | 0.006 |
| | 1x6_3 | 1.610354 | 0.358927 | 0.520105 | 0.652547 | 1.765 | 0.081 |
| | 1x6_4 | 0.545683 | 0.384642 | 0.599956 | 0.29179 | 0.469 | 0.640 |
| | 1x2 | 1.575207 | 0.652684 | 0.155294 | 0.094792 | 2.574 | 0.010 |
| | 1x3 | -0.468045 | 0.395507 | 0.225393 | 0.134199 | 2.363 | 0.019 |
| | 1x7 | -0.117891 | 0.105864 | 0.112896 | 0.134105 | 0.901 | 0.366 |
| | 1x11_2 | 0.510434 | 0.669555 | 0.116201 | 0.077324 | 2.524 | 0.012 |
| | cons | 1.524717 | 0.998293 | 2.555 | 0.011 |

表 2:

| y | Coef. | Std. Err. | RRR | Std. Err. | z | P>|z| |
|---|-------|-----------|-----|-----------|---|------|
| 2 | 1x1_2 | -0.705611 | 0.188584 | 0.439209 | 0.083124 | -3.742 | 0.000 |
| | 1x6_2 | 0.993259 | 0.228201 | 0.790535 | 0.520426 | 1.886 | 0.059 |
| | 1x6_3 | 1.20968 | 0.318189 | 0.994563 | 1.320848 | 5.430 | 0.000 |
| | 1x6_4 | 2.05021 | 0.785434 | 7.769533 | 0.095526 | 6.090 | 0.000 |
| | 1x2 | 1.571262 | 0.520569 | 1.878288 | 0.701525 | 2.611 | 0.009 |
| | 1x3 | 2.563655 | 3.153785 | 0.156959 | 0.134105 | 1.897 | 0.058 |
| | 1x7 | 0.042411 | 0.012284 | 0.932964 | 0.011705 | 2.927 | 0.004 |
| | 1x11_2 | 0.927866 | 0.160868 | 0.743204 | 0.119508 | -1.548 | 0.058 |
| | cons | 0.708039 | 0.554442 | 1.277 | 0.020 |

表 3:

| y | Coef. | Std. Err. | RRR | Std. Err. | z | P>|z| |
|---|-------|-----------|-----|-----------|---|------|
| 3 | 1x1_2 | -0.376323 | 0.181605 | 0.664377 | 0.124852 | 2.073 | 0.038 |
| | 1x6_2 | 0.830045 | 0.214227 | 2.293424 | 0.451723 | 3.871 | 0.000 |
| | 1x6_3 | 1.292605 | 0.318553 | 1.526669 | 1.253593 | 3.362 | 0.001 |
| | 1x6_4 | 1.727798 | 0.773167 | 6.874358 | 5.315023 | 2.493 | 0.012 |
| | x2 | 0.508729 | 0.059514 | 1.65973 | 0.093822 | 2.635 | 0.009 |
| | 1x3 | -0.048285 | 0.177538 | 0.006423 | 0.113986 | -3.843 | 0.000 |
| | 1x7 | -0.056325 | 0.012444 | 0.945217 | 0.011725 | -4.541 | 0.000 |
| | 1x11_2 | 0.112705 | 0.055307 | 1.119299 | 0.061905 | 2.038 | 0.042 |
| | cons | -0.695187 | 0.545819 | -1.274 | 0.020 |

(Outcome y=0 is the comparison group)
تعداد افراد خانوار (X2)
تعداد افراد خانوار به عنوان متغیر پیوسته در نظر گرفته شد. این تعداد با استفاده از فرمولی به شرح زیر محاسبه می‌گردد:

\[\text{تعداد افراد خانوار} = \text{تعداد افراد در خانواده} \]

منطقه سکونت (X1)
نام‌های نتایج نشان می‌دهد که سکونتگاه در روش‌های مصرف به هیچ روش در زنان روستایی نسبت به زنان شهری به شرح زیر می‌باشد:

- مصرف در زنان شهری: 0.29
- مصرف در زنان روستایی: 0.16

سن مادر و دانش سابقه حاملگی (X3)
سکو در زنان دارای سوابق مصرفی اثر متغیر مشاهده شده و سن به عنوان متغیر پیوسته در نظر گرفته شده است. این تعداد با استفاده از فرمولی به شرح زیر محاسبه می‌گردد:

\[\text{سن مادر} = \text{سن اولین فرزند} \]

سوابد زن (X6)
طبق تعیین قبلی سوابد زن به جهای گروه تقسیم شده است. بنابراین، به پاییز مقاله هر سطح از سوابد با سطح مرحله خوردن به این اهداف خواهیم داشت. در مقاله 9

\[\text{سوابد} = \text{سوابد ازدواج} \]

سوابد درسی‌هایی و دیپلم‌ها (X7)
سوابد درسی‌هایی و دیپلم‌ها به روش‌های مصرفی به شرح زیر می‌باشد:

\[\text{سوابد درسی‌هایی و دیپلم‌ها} = \text{سوابد درسی‌هایی و دیپلم‌ها} \]
نتایج نشان می‌دهد که در بین زنان ۱۵ ساله تا هم‌مردان استخوان مقیاس استفاده از روش‌های میانی به هیچ روش تفاوت معنی‌داری در بین زنان یا هم‌مردان نسبت به زنانی که حاملگی داشته‌اند ندارد.

برای زنان ۲۵ ساله و بیشتر شناس استفاده از روش‌های فرص نسبت به هیچ روش در بین زنان یا زنانی که سابقه حاملگی داشته‌اند نسبت به زنانی که حاملگی داشته‌اند تفاوت معنی‌داری وجود ندارد.

برای زنان ۴۰ ساله و بیشتر شناس استفاده از روش‌های سنی و مجموعه سایر روش‌ها نسبت به هیچ روش تفاوت معنی‌داری در بین زنان یا هم‌مردان نسبت به زنانی که تا کنون حاملگی داشته‌اند وجود ندارد.

برای سایر گروه‌های سنی (حدوداً گروه‌های سنی ۱۶ تا ۲۰ ساله) تفاوت معنی‌داری در شناس استفاده از هر یک از

<table>
<thead>
<tr>
<th>سن مادر</th>
<th>نسبت بخشنده برآورده شده</th>
<th>فاصله اضافی</th>
<th>خطاها استاندارد شده برابر تفاوت لجیت ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۴</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۵</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۶</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۷</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۸</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۹</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۴</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۶</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۸</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۱۹</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۱</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۲</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۳</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۴</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۵</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۶</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۷</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۲۹</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۰</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۱</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۲</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۳</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۴</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۵</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۶</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۷</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۳۸</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
<tr>
<td>۳۹</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
<tr>
<td>۴۱</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
<tr>
<td>۴۲</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
<tr>
<td>۴۳</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
<tr>
<td>۴۴</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹، ۱/۲۸)</td>
</tr>
<tr>
<td>۴۵</td>
<td>۱۵۰/۱۱۴</td>
<td>۱/۱۷</td>
<td>(۱/۰۹， ۱/۲۸)</td>
</tr>
</tbody>
</table>
نمایش احتمالات برای چهارسطح روشنایی
روش‌ها خیلی کم می‌باشند.
در مورد روش‌های دید که در مسیر اپین تا حدود 36 سالگی اکثریت از روشهایی پیش‌گیری استفاده می‌کند و از این به بعد استفاده از سایر روشهای زیاد می‌باشد. یکی از دلایل این تغییرات می‌تواند باشند که در کل زنامی که نیاز به حلال حامیه نشده‌اند با احتمال خیلی زیادی از هیچ روشهای بایستگی از بارداری استفاده نمی‌کنند و این احتمال یک روند افزایشی را با بالا رفتن سن زن دارد.

منابع

10- References Manual Release 4 stata, volum three.