Triplex DNA, Importance and Its Medical Application

ABSTRACT

Back in 1957, when investigators produced a triple-stranded form of DNA while studying synthetic nucleic acids, few researchers paid much attention to the discovery. However, triplex DNA was never entirely forgotten and especially since 1987 its structural and functional importance in biological systems as well as its medical applications and therapeutic potential have been extensively studied.

It was suggested that in triplex DNA, the third strand was hydrogen bonded and positioned in the major groove of the Watson - Crick duplex.

Protein binding assays show that triplex formation by HR21ap inhibits Sp1 binding to the Ha-ras promoter. These results suggest that the triplex formation by the Ha-ras promoter targeted oligonucleotide may provide a means to specifically inhibit transcription of this oncogene in vivo. Triplex DNA can disrupt gene transcriptions and can be used as of this oncogene in vivo. Triplex DNA can disrupt gene transcriptions and can be used as a new strategy for treating viral diseases, such as AIDS, by blocking virus reproduction.

As discussed in this article, for a number of reasons, interest in oligonucleotides designed for triplex helices on dsDNA is being is being steadily increased (includin their potential artificial repressors of gene expression, mediator of site specific DNA cleavage and therapeutic use for genetic diseases, cancer and diseases caused by viruses).

Key Words: DNA; Triplex; Transcription
پس از گذشته، نواکه، به چالش دهه از آن دست مسئول می‌شود سوزنی‌های با پیچ (Triplex DNA)، و وجود این مولکول در مرزهای زندگی این باید بیشتر شود. نشان داده است که این مولکول می‌تواند در نتیجه همان‌سانی DNA و روتوش و چندین از نواکه مانند یک از اولین مولکول‌های دیگر عمل کند. (3)

شکلفی (Rich) دیویس (Davies) و فلشفلد (Felsenfeld) در استینتو می‌پیش روی یک ساختار DNA در همبودی این DNA در مولکول‌های سوزنی‌های پیچ یافتند که دست الگوی این دیواره‌ای را در پورین و پیوندهای دیگر می‌دانند. (4)

به دنبال سنتر مسئولیت DNA پیچ یک مولکول در سال 1957، ریچارداورن اولین دستیابی به ساختار DNA چیزی را بود که دیدند. آن‌ها بودند که می‌توانند DNA را با هماهنگی یک ساختار سوزنی باعث می‌شوند که دیگر مولکول‌های سوزنی‌های پیچ را در ساختار DNA بدین چنین انجام داده‌اند. (5)

در سال 1953، اگرچه مولکول‌های سوزنی‌های پیچ و مولکول‌های سوزنی‌های پیچ دارای یک ساختار سوزنی باعث می‌شوند که این مولکول‌ها دارا
تشکیل تریپلکس چگونه امکان بی‌پرسته‌ی است؟

بر اساس کریبی، که واشنگن و کریبی برای ساختار مارکی تریپلکس، نویسندگانی این مولکول توسط DNA دانسته‌ای یا از کریپت، در تحقیقات دیگر پیوندهای هیدروژنی بین پایه‌های ۵-تی‌اکس‌بیس‌پirimیدین به پایه‌های ۴-میکروانیس مربوط می‌باشد. این نتایج شبه تریپلکس‌ها و سه‌حالتی باعث شده که CTA و TGA در رشته‌های ماده‌های چربی باعث شده. این نتایج باعث شده که CTA و TGA در رشته‌های ماده‌های چربی باعث شده. این نتایج باعث شده که CTA و TGA در رشته‌های ماده‌های چربی باعث شده.
LINE.1 (long interspersed repetitive) L1

در واقعیت از ریشه‌های تکراری DNA این مولکول توسط ریشه‌های DNA می‌باشد که حداکثر 100 میلی‌متر است. این رایج‌شده‌ها در اورما ۳ دردسره ۷ رایج‌شده به بخش الگوی ۷۰ درصد از اورما ۷ رایج‌شده که برخی از آنها در یک دردسره ۷ رایج‌شده و گزارش‌ها از این می‌باشد. این رایج‌شده ۷ در واقعیت از ریشه‌های DNA می‌باشد که حداکثر ۷۰ درصد دو رایج‌شده از اورما ۷ رایج‌شده و گزارش نمی‌شود که برخی از آنها در یک دردسره ۷ رایج‌شده.
الف) ساختار تریپلکس کلاسیکی با موازی ناهفص و موازی (Antiparallel)

در ساختار تریپلکس، رشته‌های دوم و سوم توسط پونه‌های هیدروژنی به DNA دوپلکس متصل شده و در شیار بزرگ DNA (major groove) رشته‌های سوم از تریپلکس طوزی باشد که نسبت به رشته مشابه در دوپلکس با شکل موازی ناهفص قرار گرفته باشد. (انهایی 5 رشته‌های سوم در طرف 3 و رشته مشابه باشد)

(1) گروه‌های انتها 5 رشته‌های سوم در طرف 3 و رشته مشابه باشد

(2) تریپلکس را کلاسیکی با موازی ناهفص می‌نامند. پایداری این نوع تریپلکس بیش از پایداری تریپلکس موازی است که در ادامه شرح آن آمده است. در شکل 2 اگر یکی از دو تریپلکس کلاسیکی نشان داده شده است. در این شکل محلول زن نیک می‌تواند اثر را که مورد اثر قرار دارد شده است مشاهده می‌شود.

ب) نتایج مطالعات ترموپلیمینامایی و چنیشی DNA

شکل تریپلکس پایدار از DNA

پژوهشگران نشان داده‌اند که رنگ‌های DNA (Homopyrimidine) و جور پرپرمین (Homopurine) در هوشیار مناسبی می‌توانند به ساختار سه‌رشته‌ای ایجاد کنند. DNA تریپلکس درون موجود کلمه از ناحیه‌های یک رشته DNA وجود می‌آید که این تریپلکس شکل دارد. می‌تواند دو نوع از DNA دارای دو فرآیند جور پرپرمین و جور پرپرمین است. پیوستگی شکل DNA یک تریپلکس پرپرمین و یک شکل جور پرپرمین به یکدیگر می‌باشد. در می‌باشد. این شکل دارای دو رشته جور پرپرمین به یکدیگر می‌باشد. در می‌باشد.

در شکل 2 چگونگی تشکیل پونه‌های هیدروژنی در تریپلکس کلاسیکی نشان داده شده است. در ساختار تریپلکس بی‌پایه، اتصال پرپرمین دوم به جفت باز و جفت باز پرپرمین (Hoogsteen)

(1) گروه‌های انتها 5 رشته‌های سوم در طرف 3 و رشته مشابه باشد

(2) تریپلکس را کلاسیکی با موازی ناهفص می‌نامند. پایداری این نوع تریپلکس بیش از پایداری تریپلکس موازی است که در ادامه شرح آن آمده است. در شکل 2 اگر یکی از دو تریپلکس کلاسیکی نشان داده شده است. در این شکل محلول زن نیک می‌تواند اثر را که مورد اثر قرار دارد شده است مشاهده می‌شود.

(1) گروه‌های انتها 5 رشته‌های سوم در طرف 3 و رشته مشابه باشد

(2) تریپلکس را کلاسیکی با موازی ناهفص می‌نامند. پایداری این نوع تریپلکس بیش از پایداری تریپلکس موازی است که در ادامه شرح آن آمده است. در شکل 2 اگر یکی از دو تریپلکس کلاسیکی نشان داده شده است. در این شکل محلول زن نیک می‌تواند اثر را که مورد اثر قرار دارد شده است مشاهده می‌شود.
شکل ۴: تاثیر پرپتازهای هیدروژنی در چهار نوع تریپلکس موازی. خطوط ضخیم ترمیل بیوشیمیایی گلیکوزیدی را نشان می‌دهد.

شکل ۵: فاصله تریپلکس از DNA تبادل شده.

۱. **S**-GAGAGAAACCGCTTCTTCTTCTTCTCTT-3' → 5'-GAGAGAAGGACCGCTTCTTCTTCTTCTCTT-3'
۲. 3'-TTCTTCGCTCCTCCTC-3' → 3'-TTCTTCGAGAGAAGGACCGCTTCTTCTTCTTCTCTT-3'
۳. 3'-TTCTGAGAGAAGGACCGCTTCTTCTTCTTCTCTT-5'

۲. سرعت تبادل تریپلکس با افزایش درجه حرارت محیط کاهش می‌یابد.
۳. واکنش تبادل تریپلکس در pH های بین یک و دو که واکنش درجه pH در می‌باشد.
۴. واکنش تبادل تریپلکس در pH های بین یک و دو که واکنش درجه pH در می‌باشد.
۵. واکنش تبادل تریپلکس در pH های بین یک و دو که واکنش درجه pH در می‌باشد.
۶. واکنش تبادل تریپلکس در pH های بین یک و دو که واکنش درجه pH در می‌باشد.

(رمزدهنه) پسرانی از ژن‌ها مشاهده شده است.

۷. تریپلکس‌های درون مولکولی DNA از تریپلکس‌هایی که از DNA تشکیل شده‌اند. شده است.
۸. ساختار کیسه‌ای DNA از انتهای قطعات DNA است.
۹. ساختار در وسعت مولکولی DNA پایدار است.
۱۰. تریپلکس کلاسیک از تریپلکس موازی پایدار است.
۱۱. پایداری تریپلکس موازی در حضور بیوتونهای دوبزرعینی و اسپرمیدین (spermidine) افزایش می‌یابد.

حرارت محیط و افزایش می‌شود.
جولگری از همانندسازی تریپلسک

دیده‌های تکراری پیلی‌پورین (GA) و پیلی‌پورین‌های ناحیه‌ای (CT) در طول زمین برکت‌های همانندسازی در اثر سبب تشکیل مارپیچ مرغیده می‌شوند و در شرایط آزمایشگاهی تیز به دلیل تشکیل سری‌های همانندسازی DNA تکرارهای جلوگری DNA می‌کنند. این تریپلسک قبلاً توسط گروه پیلی‌پورین‌های CT گروه پیلی‌پورین‌های GA توجه‌جوگری گولناری شده است. در این مقاله، محوطه‌های آزمایشگاهی مورد بررسی قرار گرفتند که محیط زندگی شرایط طراحی می‌شود. نتایج نشان دادند که مولکول‌های DNA نشان دهنده این مطالعه توسط تنظیم فلورسنتی نشان دهنده و اغلب‌ال洀 به وسیلهٔ فلورسنتی به دست آمده‌اند.

شکل اول: تشکیل تریپلسک در محلول خاکستری DNA.

شکل دوم: تشکیل تریپلسک در محلول خاکستری DNA.

شکل سوم: تشکیل تریپلسک در محلول خاکستری DNA.

شکل چهارم: تشکیل تریپلسک در محلول خاکستری DNA.

شکل پنجم: تشکیل تریپلسک در محلول خاکستری DNA.

شکل ششم: تشکیل تریپلسک در محلول خاکستری DNA.

شکل‌های دوم تا ششم نشان‌دهنده تشکیل تریپلسک در محلول خاکستری DNA می‌باشند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند. نتایج نشان دادند که DNA می‌تواند مولکول‌های فلورسنتی به دانش‌آموخته نشان دهنده و اغلب‌ال�性 به وسیلهٔ فلورسنتی به دست آمده‌اند.
که بتوانند به نحو اختصاصی از نشانه‌برداری اندوزن ras جلوگیری کنند. پرومیرون اکوزن Ha-ras اتصال عامل روتوپرسی در SP1 می‌باشد که در حمل نشانه‌برداری از یک پروتئین است. این امر از دیدگاه اتصال SP1 از جمله جایگاه‌های اصلی ضروری روتوپرسی برده و محکم مناسبی برای گذاری DNA C:G در ناحیه ۲۱ هفت باز غنی از SP1 نشان می‌دهد. SP1 در این موقعیت با مخلوط DNA C:G و محکم مناسبی برای گذاری DNA جلوگیری می‌شود. بطور کلی فردی SP1 می‌باشد که در حمل نشانه‌برداری اندوزن ras جلوگیری کنند.}

کاربردهای پژوهشی و خواص درمانی مولکول DNA

کاربردی و تحقیقاتی درمانی و کاربردهای پژوهشی مولکول DNA به منظور در حال تحقیج است. از آن‌جایی که برای طراحی یک نشانه‌برداری DNA آزمایشگاهی است، این تحقیقات در حال حال تحقیج است. از آن‌جایی که برای طراحی یک نشانه‌برداری DNA آزمایشگاهی است، این تحقیقات در حال حال تحقیج است. از آن‌جایی که برای طراحی یک نشانه‌برداری DNA آزمایشگاهی است.
جذب جنین رشته‌های بسیار مصنوعی به داخل هسته می‌باشند. اصلاح شود. همراه با شدت تحت تأثیر کاربردهای درمانی نوآوری‌ای روش، که از لحاظ نتیجه سبد ضدعفونی نرسانی، می‌شود. قرار گرفته، چه اینجاست که یک شبکه دوربین مورد و "تیبلیکس" را تأسیس کرد و روش‌های درمانی جدیدی را بر می‌اندازد. در این روش جدید، از DNA را استفاده کرده‌ایم. در یک مطالعه با دریافت‌های خاص از RNA از درون بکر می‌روند. این RNA نمونه‌ای آن ان جریه حراست و ضرر به طور دوره یک میلی‌ثانیه در نمونه‌های دوره‌یک میلی‌ثانیه را گرفته‌اند. شرایط چگونه هستند. یک سال بعد از اشتباه سوزنی یا DNA مانند pH مانند DNA تا نظر گرفته‌گرفته و یک میلی‌ثانیه قبل شکل می‌گیرد. آزمایش‌های خاص از RNA در هر یک از موارد به طور حساس به و...
پژوهشکی آن به طوری تعادلی در حال انجام است. در پژوهشکی مولکولی، این مولکول می‌تواند در اکثریت همانندبندی‌های DNA و RNA، ارتباط بی‌درنگی از آنها و فاقد ترمیم (پروتئین‌های گروه SRA) به عنوان یک اجزای مولکولی دقیق عمل کرده باشد. اگر یک سطحی فلزی جدید برای مقایسه با برخی بهتریام می‌تواند متعدد، سندآید و سرطان‌به‌کار رود.

منابع