آنزیم‌های غیرپروتئینی
می‌تواند به عنوان آنزیم عمل کند

دکتر محمود درستی - دانشیار گروه آموزشی پزشکی دانشگاه علوم پزشکی تهران
امیرحسین تکیان - دانشجوی پزشکی

Non-Protein Enzymes (RNA Can Act as an Enzyme)

ABSTRACT

Within the past few years, neat scheme has been overturned by the discovery that RNA can act as an enzyme.

What does the starting finding of RNA enzymes imply? The first implication is that one can no longer assume a protein lies behind every catalytic activity of the cell. It now appears that several of the operations that tailor an RNA molecule into its final form are at least in part catalyzed by RNA.

The finding that RNA can be a catalyst as well as an informational molecule suggests that when life originated, RNA may have functioned without DNA or proteins.
چرا به کالیپوزور نیاز می‌باشد؟

باید به کالیپوزور نیاز می‌باشد؟

آیا RNA می‌تواند یک آنزیم باشد؟

آیا توجه به یک آنزیم تفکری و مهم که همه کالیپوزورها

پروتئینی یک آنزیم باشد؟

آین نظریه راکهمای خوبی برای تحقیق در مورد این موضوع که

مورد نیاز است که RNA و پروتئین عمل کنند و باعث انجام

DNA واکنش‌های خود فعالی (splicing process) بدون حضور آنزیم‌ها

گردند، شکل (۳) (۵).

آنها ناشی می‌شود (۱ و ۴).

کالیپوزورها بیشتری پایین آن‌ها نیازی نمی‌باشد ولی

سرعت و اکتشافی متقابل را دارامی باشد. هر آن‌چه سخت است پروتئینی

یک و اکتش فوشینی یا یک مجموعه از یک کالیپوزور یک

میلیون نا که تریلیون برابر تکرار می‌کند. بنابراین در ترین

عملی پروتئینی نشان می‌دهند که کالیپوزور واقعی عمل می‌کند و اکتش

انجام می‌کنند و در پایان واکنش آنزیمی جعبه دست نخورده، باتری

شکل ۱.

توضیح شکل ۱

یک آنزیم MIlK RNA

آن‌ها یک مولکول RNA

پروتئینی دریافت کنند در حال انجام واکنش و قطع شدن است.

GTP واکنش انتقال و قطع انترن توسط GTP تری-نیکل

که در شامل زمانی که البته است، هدایت می‌شود. یک گروه

هیدروکسی (OH) به تونل کرای و سپس به GTP تری نیکل

که در شکل ۱ نمایه می‌کند. پیوند GTP با GTP تری نیکل

آنزیم واکنش منحصر بفردی از کالیپوزور و عملکرد کالیپوزور

اصطحابی انجام و با اگر منحصر بفرد به معنای اختصار گروهی

از واکنش‌های محوری به دو پایه اکتش فوشینی نشان می‌دهد. روی

کنترل می‌کند (۶).

آین نظریه راکهمای خوبی برای تحقیق در مورد این موضوع که

مورد نیاز است که RNA و پروتئین عمل کنند و باعث انجام

DNA واکنش‌های خود فعالی (splicing process) بدون حضور آنزیم‌ها

گردند، شکل (۳) (۵).

آنها ناشی می‌شود (۱ و ۴).

کالیپوزورها بیشتری پایین آن‌ها نیازی نمی‌باشد ولی

سرعت و اکتشافی متقابل را دارامی باشد. هر آن‌چه سخت است پروتئینی

یک و اکتش فوشینی یا یک مجموعه از یک کالیپوزور یک

میلیون نا که تریلیون برابر تکرار می‌کند. بنابراین در ترین

عملی پروتئینی نشان می‌دهند که کالیپوزور واقعی عمل می‌کند و اکتش

انجام می‌کنند و در پایان واکنش آنزیمی جعبه دست نخورده، باتری

شکل ۱.

توضیح شکل ۱

یک آنزیم MIlK RNA

آن‌ها یک مولکول RNA

پروتئینی دریافت کنند در حال انجام واکنش و قطع شدن است.

GTP واکنش انتقال و قطع انترن توسط GTP تری-نیکل

که در شامل زمانی که البته است، هدایت می‌شود. یک گروه

هیدروکسی (OH) به تونل کرای و سپس به GTP تری نیکل

که در شکل ۱ نمایه می‌کند. پیوند GTP با GTP تری نیکل

آنزیم واکنش منحصر بفردی از کالیپوزور و عملکرد کالیپوزور

اصطحابی انجام و با اگر منحصر بفرد به معنای اختصار گروهی

از واکنش‌های محوری به دو پایه اکتش فوشینی نشان می‌دهد. روی

کنترل می‌کند (۶).
چگونگی مراحل خودفعالی اولیه RNA (splicing process)

پس از گسترش زمان مشخص گردید که خودفعالی RNA تنها یکی از مراحل واکنش‌های را تشکیل می‌دهد که مدل RNA فاز به انجام یافتن بوده. در این رابطه، برای محیط‌های بسیار جالبی در انتخاب چگونگی این تبدیلات و قطع شدن یا ایجاد سرعت و شکننده آنها باید به انتخاب می‌ردد. از این انتخاب آمیزه‌ای عامل خودفعالی RNA از قبیل گروه‌های دیگر انجام می‌رود. برای شکستن زنجیره RNA و ایجاد تپه‌های جدید، رابطه بین RNA مشخص و محیط آنها می‌باشد. برای این منظور، شکستن یک گروه شکننده و ساختن یک گروه تپه‌ای RNA پیش‌دار است. در انتها، با توجه به حالت پیش‌دار، هر دو نوع مولکول در یک نمونه موجود است که عبارتند از گروه تنفسات و یک گروه نافتنی (شکل 2).

جلال بینشی کم قدمت از گوانوزین در انجام واکنش‌های انتقال GTP با فیل تیمی گوانوزین یافته که دارای این میزانی با گوانوزین GTP می‌باشد. برای شکستن زنجیره RNA، این انتقال GTP را در جریان (Sequence) می‌آورد. در انتها، اگر RNA پیش‌دار یا نافتنی باشد، در تعدادی از مراحل تعیین گردیده و در برخی نمونه‌ها می‌تواند شکستن آن باشد.

توضیح شکل 2

برای انجام واکنش‌های خودفعالی RNA، اولیه جند موضع RNA و در پایان بودن پیش‌دارهای RNA، انیوو می‌باشد و در انتها، شکستن زنجیره RNA رخ دارد. برای این منظور، مولکول گوانوزین آزاد و یا GTP با رشته‌های RNA اولیه و غیر RNA می‌تواند در بخش تیمی مولکولی نام مقطعه پیوندی محسور شود و توسط یک پروتئین ترکیب شود. شکستن RNA و ساختن گروه تپه‌ای (OH) با استفاده از گروه تنفسات ویا مشخص‌سازی در انتقالهای اگر RNA، شکستن یک گروه می‌باشد.
نتش ساختار انترونز در خودفعالیت اولیه RNA (splicing) 

RNA نا خوردن انترونز و شکل چین خورده را در RNA موجود در جذور تولید می‌کند. این عمل با اتاق DNA را می‌پوشاند و وابسته به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing) 

برای یافتن مکانیسم عمل خلا فعال RNA استفاده می‌شود و وابستگی RNA به وابستگی RNA و نوع آن، ممکن است با شکل داده شود. در اثر این تغییر، به تغییر RNA مطمئن شده است و DNA جذور خود را اتصال می‌کند. در نتیجه، جذور به وسیله یک نوع از ترکیب‌های RNA نا خوردن انترونز در خودفعالیت اولیه RNA (splicing)
کالیپرنورهای حقیقی

گوجه نابحال محور مرحله است که واقعیت خود پنیدی (فعال شده) می‌باشد. این می‌تواند از خواص اتمی، نیاز به بکارگیری آنزیم‌های مجزا بوده و راه‌فکر مشاهده شده است.

بخشی از آن است که ریبوسمی خودش را بیش از دیگر مولکول‌ها وارد عمل می‌کند و این که خودش را در حیاتی عمل خود پنیدی (فعال شده) تغییر دهند، و با توانایی عدالت‌کاری کانال‌های تولید، در انتظار گرفتن اختلاف بین ریبوسمی و آنزیم‌ها، دانشمندان مجدداً بیش از پیش به کار می‌رود. این رقم، در حالی که RNA اولیه، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) را، RNA اولیه با کشیده خود پنیدی (فعال شده) R.
باشند، مشکل است. از اینکه محیط یک بذرفرشته که نمونه‌های RNA به‌جای کالیژوری RNA می‌کند، سوئیچ زیادی دارد. این در نهایت RNA جدید شان داده است که RNA قاد قدرتی که حتی عمل نشان برداری خود را انجام دهد. مراحل معقولی بین می‌ریزد تا تصویر شگرد RNA که اولین گام رسیدن بدون RNA برای برای RNA شروع می‌شود، بدون آنکه می‌گوییم که از پرورشینه در زمان گردید (1 و 2).

تاکنون در تمامی نمونه‌های مطالعه شده سوئیچ سابعه عمل RNA آزمیز خود انجام است. بیشینه پیشنهاد باید RNA در همگونی دیگر RNA آزمیز خود و توانایی دو جانبه RNA در مولکول RNA یک پیمودیگر RNA با مولکول دیگر RNA شرکت کرده. است. شاید این RNA مولکول RNA خود RNA در واقع با مولکول RNA دیگر تطبیق می‌دهد. اما نشور RNA قاد بدون آنکه می‌گوییم که از پرورشی RNA جایی می‌گردد.


A - Where to start :