محاسبه ساده دوز اکتیویت پیشنهادی برای درمان ریسانت پوزه

مقدمه

جهت پیوستن عضوی از بدن انسان است که به‌شکل
پروپاژئی اسپیده و درصد پوژه شکسته شده و خود
اختصاص داده است، در روش‌های روشکی، درمان رادیودارویی
(radiotherapy) این عهد از اهمیت زیادی برخوردار است، و
علت تراکم پیاله بید دوز اکتیوریت تعداد اکتاپیونیاز
در این راهای رادیوازیولوپهای (β) وجود دارد که می‌تواند در این راه
بکارگیری شود و صدمات بیولوژیکی موردنظر را به غد،

خلاصه

به علت وجود تناسب‌های پایدار و دو کرونه
در دوزهای I 131 همچنین به‌منظور تغییرات غیرقابل پیش‌بینی
در متابولیسم غده پوزه و عدم امکان محاسبه دقیق
فاکتورهایی که برای اندام‌های دیفی دوز پوزهای I 131 وجود
لازم است، محاسبه دقیق دوز پوزه و ورشتیقه اندازه‌گیری دقیق مقدار
اکتیویت I 131 لازم امکان‌پذیر نیست. ولی با محاسبات
باید، می‌توان با تقریب قابل توجهی مقدار اکتیویت پوزه‌ای
برای یکی یا چند نمونه درمانی (و یا تشخیصی) را نسبت به
در عمل می‌توان دوز جذب (برحسب rad) مربوط به پوزهای
گاما دریابند دوز حاصل از پوزه‌ها یا یکی یا دواید گرفت. این
استفاده از چند‌هایی که در دسترس می‌باشند و همچنین
(2) پراگیری ۱۱۱I را به منظور های دیگری در کرده است. در حال حاضر ثبات شده است که ۱۱۱I با زریگی های منازع رادیوایزوتوپ مناسب در دارمی پرکاری غده نیروپید (hyperthyroidism) و سرطان نیروپید (thyroid carcinoma) می‌باشد.

(3) یک بته مورد امر ۱۱۱I با تام جمعی ۲۴/۰۷ روز با تابش پروتو گیاه (پ) به ۱۱۱I تا زمانی که می‌تواند مصرف شود از نظر می‌رود که می‌تواند مصرف های دیگری در میان می‌گردد و برخورد باشد. زیرا تئوری "نماز افزایش پروتوهای آن در موضع بی‌سک در محل دگرگونی رادیوئترکلیز جذب چند و پاتنی می‌تواند هلپسوم را کاهش می‌دهد، بدون اینکه به سه‌نهم که حمل تولید سلول است ضمومه پزند، و یکی از همچنین گسترش و آرامش‌ها یافته فاوان (۱).

<table>
<thead>
<tr>
<th>پروتو گیاه (Mev)</th>
<th>تابش درصد (Mev)</th>
<th>پروتو گیاه (Mev)</th>
<th>تابش درصد (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۵</td>
<td>۲/۸</td>
<td>۰/۱۸</td>
<td>۲/۲</td>
</tr>
<tr>
<td>۰/۳۳</td>
<td>۹/۳</td>
<td>۰/۲۳</td>
<td>۶/۲</td>
</tr>
<tr>
<td>۰/۶۱</td>
<td>۰/۲۲</td>
<td>۰/۷۶</td>
<td>۷۷</td>
</tr>
<tr>
<td>۰/۸۱</td>
<td>۰/۶۴</td>
<td>۰/۲۴</td>
<td>۹/۸</td>
</tr>
</tbody>
</table>

(جدول ۱)

(4) ارژی متوسط ذرات با این انرژی متوسط ذرات با (thyroid uptake) با درنظر گرفتن متابولیسم آن، ذخیره‌سازی و ترشح بید (به صورت حیرت) به صورت پبوتشه و آدن از سوی سلول. این مسئله از سوی دیگر تأثیر درمانی در رادیوئترکلیند "۱۱۱I" ثابت است. بی‌سک و یک‌سکی می‌تواند باعث تغییرات زیاد آنتی‌اکسیدانی در منابعی مانند نیتروژی و مانابولیکی می‌شود. همچنین نمودار می‌تواند تغییرات و عدم امکان محاسبه برخی از فاکتورهای لازم امکان بدست آوردن به تقویت کلی دقیق برای محاسبه دوز پروتو به خاطر دیده‌اش که اکتیویته کاربردی وجود ندارد. همچنین زناشویی شده‌شده بی‌سک تخمین قابل قبول مقدار اکتیویته مصرف در دارمی وجود دارد (۲) که عبارتند از:

(1) روش اکتیویته ثابت است در آن مقدار مشخصی از اکتیویته ۱۱۱I به بیمار داده می‌شود.

(2) روش میکروکوپوریک (μCi/گرم) که مقدار تجویز اکتیویته به بزرگی غده و درصد آن بستگی دارد.
روش تعیین دوز پرتو گرفته شده به فرآیند (Delivered Radis Method) کاربردی در دانش برای مبانی محاسبه مقدار انرژی جذب شده پرتو بر سطح (gr) است. در این روش دو عاملی است:

1. مقدار میکولاژیک (μCi)
2. وزن جذب شده به عنوان (gr)

بنابراین معادله: \[A (\mu Ci) = \frac{G_r \times gr}{(g/d) \times 22 \text{ ساعت}} \]

این روش که با تقریب خوبی می‌تواند در اندازه‌گیری میزان شیمیایی یک چکش شده یا یک چکش میکولاژیک (total thyrotoxicosis) از جامعه آماری باشد. این معادله به تخمین اندازه جذب شده به عنوان گزارش می‌شود.

دوش پرتو کلی درمان پرتوی‌سیله‌ای در عضو از جمع زمانی (peak) برای پرتوهای مختلف در همان عضو به‌دست می‌آید. طبعی است برای طرح یک دانشمند منطقه‌ای و مؤثر، این دوره پایین‌تر به پرتوهای مورد بررسی باید دنبال دوست این به همین صورت محاسبه‌ای در پرتو باشد.

پرتو یافته‌ها و اعضای ممکن مانند مخز قرمز استخوان و گانه و مر نیز در اندازه‌گیری می‌تواند با کنار یکدیگر که تراکم رادیواکتیو در آن می‌تواند تخمین داده شود.

پیشنهاد انجام گیرد.

در بیشتر موارد درمانی تراکم رادیواکتیو به‌کار گرفته می‌شود.

روش بیشتر به وسیله باتری‌های فتوسیلی (phototaxis) می‌باشد و دانش برای پرتوهای مورد بررسی باید دنبال دوست این به همین صورت محاسبه‌ای در پرتو باشد.

امضاء‌گری می‌تواند به‌وسیله یک شماره‌سازی سیستم‌های absy (scintillation) مانند دستگاه جذب انگاج پذیرد.
و برای دگرگونی کامل I10 بدون حذف بیولوژیکی از رابطه زیر استفاده می‌شود:

\[D_p(t) = (1 - e^{-\lambda t}) \] \[\times \frac{1}{T_{2\alpha}} = \frac{1}{T_{2\alpha}} \] \[\times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول E_β و T_В برای پایان کیک (Peak) و تاریکی (TAR) مورد استفاده قرار می‌گیرند. در صورتی که با در اختیار داشته نشده است، باید برای تعیین مقدار انرژی E_β به صورت زیر استفاده شده است:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]

در این دو فرمول I10 بکار می‌رود. انرژی E_β و نیروی مولی (Mev/dis) به صورت زیر تعریف می‌شود:

\[D_β(t) = D_β(\infty) \times e^{-\frac{t}{T_{2\alpha}}} \]
برای دگرگونی کامل:

\[D_v(\infty) = \frac{3}{10} v x C x T_p x \sum_{i=1}^{N} \phi_i x E_i x \phi(\mu_{en} x R) \text{ rad/h} \]

جدول (۲) (۱۳) مربوط به جدول های گاما با دست می‌دهد:

<table>
<thead>
<tr>
<th>(\mu_{en} x R)</th>
<th>(\phi(\mu_{en} x R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>0.13</td>
<td>0.03</td>
</tr>
<tr>
<td>0.14</td>
<td>0.04</td>
</tr>
<tr>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>0.16</td>
<td>0.06</td>
</tr>
</tbody>
</table>

در محاسبات بالای انرژی ۱۰۰٪ ورود پرتو با مربوط به اکتیویته نگهداری شده (retained activity) یک میکروگرمی \(\mu Ci/\text{gr} \) بر گرم و در زیر هر یک اکتیویته نگهداری شده مربوط به پرتوهای گاما به درز تخصصی بدن افراد می‌شود (۱۰۱).

\[D_{\beta\gamma}(\infty) = \frac{3}{10} v x T_p x Q / M x E_T \text{ (rad)} \]

و در نگه‌داری S به صورت زیر تعیین می‌شود:

\[S = 3 / 10 v x T_p x Q / M x E_T \text{ (gr rad)} \]

اندیکس تجویز (۱)

اگر مجموعه پرتوهای گاما جنب شونده (1) ارزی جذب به گونه‌ای که \(E_\gamma \) و \(E_\gamma \) دو زیر مجموع \(E_T = E_\gamma + E_\gamma \) و \(D_{\beta\gamma} \) و \(D_{\beta\gamma} \) و \(E_T \) خواهند.
اندیکس تجویز به صورت نسبت اکتیویتی تجویز شده به دور انتگرال بر حسب \(\mu \text{Ci/Kg.rad} \) تعیین می‌شود:

\[
(\text{PI}) = \frac{Q/S}{1000 \times T_p \times E_T / T_x \times E_{T-x}}
\]

اندیکس (PI) محاسبه شده ر در جدول‌هاي در اختیار است (جدول 3). این اندیکس می‌توان مقدار اکتیویتی مصرفی را در یک درمان بدست آورد، طبیعتاً اکتیویتی حقيقی کمتر از انتظارهای بدست آمده از نسبت Q/S است، چون مقداری از انرژی از غده فرار کرده و مقداری از \(111 \text{In} \) دفع می‌شود (اندیکس براي \(111 \text{In} \) مماد \(39/44 \text{Ci/Kg.rad} \) باعث کاهش اکتیویتی مورد نظر در درمان کامل است که کمی باشد به صورت زیر قابل محاسبه است:

\[
\text{Te}^{\text{mum}} = 38.2 \mu \text{Ci/Kg.rad}
\]

اندیکس تجویز به جدول 1 و 2 است

دوز انتگرال

(\(18 \text{ Kg.rad} \times 15 \text{ rad} \times 38.2 \mu \text{Ci/Kg.rad} \times 10 = 113.12 \mu \text{Ci} \))

برای محاسبه فرض اکتیویتی 100 کلیه به یک بیمار در یک خوراک غده نیوترونی به ورم 10 میکروتکسیومن (100) و 120 رد تجاوز گذاشته که به فرض این که تراکم 100 در غده کنار می‌گیرد، راندمان جذب پروتو 100/100 و یک نفس باز، باقم می‌گیرد:

(1) حساب می‌کنیم:
REFERENCES

