دکتر بهرام فتاحی، استادیارگر، فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی تهران

Optics of Diffractive Multifocal IOL

SUMMARY

The diffractive multifocal IOL provides simultaneous bifocal imaging by utilizing both diffractive and refractive optics. In both distant and near vision, there is a clear highly focused image on the retina. The second image is highly defocused, providing only faint background illumination. A small amount of the light goes to the higher orders of diffraction which are not perceptible by eyes. The bright spot produced by a zone plate is so intense that the plate acts much like a converging lens. There are also fainter images corresponding to focal lengths f/3, f/5, f/7,

خلاصه

با یک تکنولوژی جدید، عدسی داخل چشمی چندکانونی تفریقی با استفاده از یک تفکیک تفریقی و شبکت نوری، تصور و پردازش دیجیتال چندکانونی هم‌زمان را اجرا می‌کند. شبکت نور یا تفکیک نوری این یک به یک گونه نور باشد که مقدار کلیکی از نور صورت درجه‌بندی باید نور یا هم‌زمان بوسیله چشمی قابل درک نشود. زمانی که دیدن ایجاد شده، فضای ورودی شاهد، به وسیله پردازش بندی شده شماره‌ام نمایش می‌گردد. در روی نور، شبکت نور به دست آمده در روی نور، به وسیله پردازش بندی شده و یک عدسی داخل چشمی یک کانونی استاندارد کار می‌کند (شکل 1).
شکل (1)
تفرق نور‌های هفتگانی به امواج تریاتی از دو منظور بیان شده‌اند. برای تشکیل دادن پکیج جدید، از دسته‌بندی، با هم ترکیب‌شونده امواج نوری، هفتگانی که هم‌فاز با پکیج می‌شوند، امواج ترازی نوری هفتگانی که هم‌فاز با پکیج نیستند ترازی سازند تداخل کنند و نهایتاً امواج نوری بیانیه می‌شوند. هشتگانی که خارج از پکیج هستند بطوریک تداخل کنند و هم‌بندی‌ها حفظ می‌کنند و نهایتاً بسیار بینی، توازن‌پذیرند.

شکل (2)
انجمی داخیل چندکاتنی تشکیل دیر که برای ایجاد دو نقطه کاتنی که در آنها قسمت آکس، نور هفتگانی بیانش طرح شده است. امواج نوری می‌تواند به اینکشکی چندکاتنی تشکیل دیت مشابه یک ساختار طریفی (microstructure) که در صفحه عقبی جامدی داخل چشمه معمولی قرار داده شده تفرق پیدا می‌کند. نور تفرقه بازه بطوریک تداخل سیکلند و دو نقطه کاتنی جداگانه تشکیل می‌شود که هردو تصویری

شکل (3)
ساختار طرفین تغفیل شامل یک سلسله از سطح‌های یا منطقه‌های متحدالمرکز با شب طرفین (microslop) است که در تركیب با اپتیک شکست نوري ویژعی عدسی، نور مورد استوکس را تفرقه می‌نماید به‌طور مساوی در هریک از دو کانون جمع می‌کند. مقدار کوچکی از نور سرفر دوجه‌های بالای تفرقه شود که بوسیله چشمه قابل درک نیستند (شکل ۲).

شکل (۲)

پرتوهای نوری از یک شیء دور هنگامی که وارد جسم می‌شوند یا یک چنایگی که وارد جسم می‌شود می‌گردد. این عدسی داخل چشمی چندکانونی تفرقه از قدرت دور برای ایجاد یک کانون روشن در شبکه استفاده می‌کند. یک تصویر دوم کانونی نشده در داخل زجاجه تشکیل می‌شود و بصورت روشنایی زمینه‌ای ضعیف برای تصویر کانونی نشده درک می‌گردد (شکل ۵).

شکل (۵)
لوازم و روش کار

ورقه منطقه (Zone plate)

ورقه منطقه، پرده‌ای است که بر روی روشنایی بسته و نوری که جلوی نور در مناطق حساس (پراکنش) برعوضوی بکار می‌رود. منطقه‌ای می‌باشد که درون روشنایی بسته، به‌صورت بلواره‌ای یا جاده‌ای بر روی نور به صورت طرحی متناسب با نوع، شدت و منابع آن‌ها، از جمله:(...)

شکل (۷) - ورقه منطقه
نتیجه
عمل ورفتاً منطقه‌برداری یک جهتی موج کروی نایب‌شده در شکل 8، فرض کنید XY مقطع روفه منطقه‌برداری عمود بر صفحه کاغذ را نشان دهد. منبع نقطه‌ای نور است، P محل پرده برای تصویر مدارک درخشان، A فواصلی منبع نور از ورقة منطقه و B فاصله برداز، از ورقة است. B، C... شعاعهای اولین، دومین، سومین و ... منطقه‌های نیم برود (half period zones) مستند. محل برداز طوری است که از یک منطقه نا منطقه‌بوده.

(بدین‌است، $0 < x < t$ و $0 < y < r$)

شکل (8)

در شکل 9، فرض کنید A_0، A_1، A_2 و... الی آخر دامنه‌ای ارتعاشات مربوط به امواج نوراژی از مناطق نیم برود اول، درم، سوم و... در P نیز مشاهده شده است. اگر مناطق را از O (شکل 8) به طرف پرده بردن در نظر بگیریم، منابع برود امواج می‌باشند و با تاب، A_0، A_1، A_2 و... الی آخر نیز به سبب انتقال از A_0 و A_1 به انتقال A_2 و... یکنواخت دارای رتبی کاست مردم هستند. پس اگر، A_0 انتقال از A_1 و A_2 به A_3 و... اختلاف را P بین هر دو منطقه مخلوط، اگر تغییر مکان ارتعاشات امواج نوراژی مربوط به مناطق شماره یک درجه‌ی شدت باشد، در همان لحظه تغییر مکانی مربوط به منطقه شماره یک درجه‌ی شدت خواهد بود. پرنی‌تنواد دامنه‌ها پندریج کمی می‌شود، دامنه‌ای ارتعاش، مربوط به هر منطقه در P بنابر قابلیت "میانگین دامنه‌ها مربوط به مناطق" و بعدها از دست نروی کننده شود:

$$\Lambda_1 = \frac{A_0}{r}$$

شکل (9) انتقال دامنه‌ها از مناطق نیم برود
اینک عدسی داخل جسمی چندگانه‌ی تقارنی

دائم و شدت نور در عمل ورود می‌تواند از دو طرف بین‌النگهی است که تساوی

\[A = A_1 + A_2 + A_3 + \ldots + A_n \]

تکه‌بندی بی‌دایه‌ای این است که اگر تمام سطح شیار جدید باشد، شدت در P به سبب بین‌النگهی است که تساوی

\[A = A_1 - A_2 + A_3 - A_4 + \ldots + A_n \]

در مورد دوم به یعنی هنگامی که تمام سطح جدید موج خارج مساد است، شدت از دو طرف زیر به‌دست می‌آید:

\[A = A_1 + A_2 + A_3 + \ldots + A_n \]

اگر پیش‌ره و فرد قبل

\[A = A_1 + A_2 + A_3 + \ldots + A_n \]

اگر نیز زوج بعدی مقدار آری \(A \) در یکی

\[A = A_1 + A_2 + A_3 + \ldots + A_n \]

اگر پیش‌ره و فرد بعد

\[A = A_1 + A_2 + A_3 + \ldots + A_n \]

اگر زوج بعدی

\[A = A_1 + A_2 + A_3 + \ldots + A_n \]

چون تمامی جنبه موج خارج مساد است، تعداد مناطق نیم‌بردی که می‌تواند با مراحل به تکه‌بندی شود به‌سادگی است. برای دریافت میانگین شدت، می‌تواند با استفاده از این روش باشد:

\[A = \frac{A_1}{r} + \frac{A_2}{r} + \frac{A_3}{r} + \ldots + \frac{A_n}{r} \]

و با سپس تکه‌بندی جنبه مهم مساوی است با

\[A = \frac{A_1}{r} + \frac{A_2}{r} + \frac{A_3}{r} + \ldots + \frac{A_n}{r} \]

تشکیل تصویر پوسته ورودی منطقه مانند یک عدسی

نقطه در غیر کناری بیشتر شده و به‌سادگی یک و روزه منطقه بیشتری تعریف است که ورود مانند یک عدسی همگرا کننده عمل می‌کند و می‌تواند

برای تشکیل دادن یک تصویر بکار نماید (2).

تصویر کشیده که 10 منطقه فرد نخست (مانند ورودی منطقه شکل 6) روشن باشد، این امر ادامه‌ای از این است. ولی تمامی جنبه مهم مساوی است که ورود مانند یک عدسی همگرا کننده عمل می‌کند و می‌تواند

بنابراین از پارامترهای شدوت، دامنه‌ای‌ها A، A، A، A، A، A و... همان نیم‌بردی را خواهند داد (3).

طول کانونی اصلی

می‌توان نمونه کرد که طول کانونی اصلی از رابطه زیر به‌دست می‌آید:

\[\gamma = \frac{r}{\lambda} \]

بعنوان مثال، اگر اول 6000 نانومتر یا 0.6 میلی‌متر و 1 مومر لوزوم برای 57 سانتی‌متر باشد، 1 مساوی 1585 1 میلی‌متر می‌شود و شعاع منطقه صدم حدود 58.6 میلی‌متر می‌شود (4).
بحث

کانونیاب متعادل

هنگامی که پرده تزدکر به ورودی منطقه حرکت داده شود، مساحت عناصر نرم پریودی باشد و عناصر نرم پریودی بیشتری روی هر منطقه از ورودی موجود باشد. فرصت یک منطقه اول فقط یک عنصر نرم پریودی داشته باشد و دامنه مربوط به این منطقه در رابطه با مسارتی A_m بناست که این منطقه به نهایت تغییر به منطقه با در صورت دامنه مربوط به این منطقه در این محل ورود رابطه زیر به هدست می‌ایست:

$$A = A_m + A_s + A_r = \frac{A_m}{\gamma} + (\frac{A_s}{\gamma} + \frac{A_r}{\gamma}) + \frac{A_r}{\gamma} = \frac{A_m}{\gamma} + \frac{A_s}{\gamma}$$

ولی A_s و A_r در حالت زیر استا که $A_s < A_r$ و A_r موجود در فرآیند این تصویرچراغ منطقه ورودی شامل $7, 8$ و منطقه فرنل است (3).

طول کانونی ورودی منطقه از رابطه زیر به هدست می‌آید:

$$\lambda = \frac{\lambda_m}{(2\lambda_m + \lambda_s)}$$

با فراوردن اعداد $7, 8$ و به جای λ_m محلهای مختلف پرده پریای تصویر در رخ‌شان درجه اول دوم، سوم و با داده می‌شود. در رابطه باید در حالت زیر γ منطقه جهانی موج است λ طول موج بیشتر است و (1) تعداد یک ذرات این نرم پریودی موجود در هر منطقه است. به عنوان نمونه: اگر طول کانونی داخل ورودی 75 سانتی‌متر $(Quick 105$ دیپنتری) باشد، طول کانونی دوم برای تشکیل میکروی تصویر برخوردار است یعنی 19 سانتی‌متر $(Quick 25$ دیپنتری) است (1).

طول کانونی برای رنگ‌های مختلف

در یک ورودی منطقه، طول کانونی برای مرز بیشتر از مرز فرمول است که عکس حالت یک عضوی مکرر است.

اندازه‌گیری میکرودرمک، از مرکز خارج شدن و شباهت با مولکول

شایان نجد است که عضوی داخل چندنرس منطقه نفلتی مستقل از اندازه‌گیری میکرودرمک و از مرکز خارج شدن خفیف عضوی کار می‌کند. علت آن است که مناطق نفوری متعدد در راوی هم منطقه عضوی گسترده، منابع و امکانات منطقه موجود خواهند گردید.

همه منطقه عضوی در هر دو نقطه کانونی مشترک می‌باشد (شکل 1).

می‌توان در رنگ منطقه را یک شکل دو بعدی از یک عضوی تغیر درک کرد. یک عضوی ورودی منطقه فرنل نور را نرمی‌کند و یک پیدا می‌کند. این شکل ناحیه بین تغییرات نوری در یک عضوی منطقه نفلت می‌باشد. این شکل بین تغییرات نوری در یک عضوی منطقه نفلت می‌باشد. این شکل بین تغییرات نوری در یک عضوی منطقه نفلت می‌باشد. این شکل بین تغییرات نوری در یک عضوی منطقه نفلت می‌باشد. این شکل بین تغییرات نوری در یک عضوی منطقه نفلت می‌باشد.
آکون به سرعت در حال پیشرفت است (5)

شکل (10)

شکل (11). منظوره عدسی داخل چشمی چندگانویی تعرقی

آز روبن و نیم‌رخ

REFERENCES