ترانسفوزیون ماسیو
(Massive Transfusion)

دکتر بهدخت اسکوئی

در سال ۱۳۹۲ با انتقال خون به بیماران اولین ترانسفوزیون انجام شد.

ترانسفوزیون‌های اولیه که در همگی آنها خون خیولان بکار می‌رفت بیشتر جهت درمان امراض رویای انجام می‌شد و وقیعده داشت بکار می‌رفت. درمان در اینجا در کمی شد و به شدت از دیگر کرده یک درمان. این درمان می‌شود که همکاری نگاه‌دار است که در اینجا است (۱).

در تاریخ‌بیچه ترانسفوزیون‌های اولیه گاهی نیز به ترانسفوزیون جهت درمان خون‌ریزی برخورد می‌کنیم. این افزایش ترانسفوزیون‌های برخورد می‌کنیم. یکی از ترانسفوزیون‌های برخورد می‌کنیم. درمان در اینجا به سبب وقیعده این علم لاقبال دیگر مدئیت شد ترانسفوزیون مردی در فرآیند به بود. این مار دیگر حمایت شیزوفرفنی می‌شود که ضمن آن همسر خود را کنک می‌زد. جهت درمان این مرتبه خون خورا به بیمار او انتقال دادند و نتیجه آن‌انسان در خشان بود که مورد اعجاب هم‌گیت و بیمار همچون برخای آرام شد ولی یک سال پس از این درمان دوباره جنون اوعود کرد و برای بار دیگر ترانسفوزیون خون خورا بکار برند و بیمار زیر این عمل در گذریت. همسر بیمار طبیب را می‌توان به سه نگاری کرد و طبیب همسر بیمار را می‌توان به مسوم کردن شور خود نمود. محاکمه برخورد داشت و نتیجه این جنجال رکودی بازار ترانسفوزیون شد و در فرآیند دستور صادر شد که جهت هر ترانسفوزیون‌های دیگر از دانشکده طب پاریس اجازه رسمی صادر شود (۱).

*دانشیار انتزیولوژی
خون واسیدیتریکی مانع بالارفتن PH خون در سرماهای یخبنجال ودکستروژجی تغذیه غلیظ‌نیای قرومز خون است. تغییرات شیمیائی ومتابولیکی که در خون بعلت اضافه کردن محلول ACD ونگهداری آن در حرارت ۴ درجه یخبنجال پیش می‌آید جمعاً یکناب « storage lesion » بیشتر ۴۰۰ تا ۱۲۰۰ محلول اضافه می‌شود:

میابد: (جهت ۴۰۰ خون ۳۰۰ محلول ACD اضافه می‌شود)

عمر غلیظ‌نیای قرومز خون بانک ۷۰% طبیعی است و این موضوع را بوسیله علامت‌گذاری غلیظ نیای قرومز با‌خاه رادیوایروتوپ و امضان مکرو‌رخون شخص گیرنده و جستجوی ماده‌های ایروتوپ در این نمونه‌های خون بدست آورده‌اند. منحنی تجزیه درخون بانک بطرف چپ منحرف Dissociation Curve اکسیژن از هم‌گلیز هشته است یعنی هموگلیسی خون بانک کمتر اکسیژن آزاد می‌کند و این خاصیت ناچیز ساعت پس از انجام ترانسفورمیون باقی می‌ماند (۱). در خون بانک درجه اشباع هموگلوبین از اکسیژن به ۳۷۵% رسیده و فشار اکسیژن به ۴۸ میلی‌متر جیوه تقیل می‌باشد. گرم کردن خون تاثیری روی اشباع هموگلیسی از اکسیژن ندارد (۷).

کلرونهای قرومز بعلت قارچ‌گرفتن در محلول ACD که نسبت به خون هیپوتونیک است متور و درشت هیدروزن باوجود این تغییر در هماپوریت دیبه همیشور دی یا بعلت اضافه شدن محلول ACD خون تقیل به ۱/۰ رقیق شده است بیشتر تغییرات گلیوسیمر منازع ترانسفورمیون که بانک موجود بود (۳)

ازجمله تغییرات مناسب‌لیسمی خون بانک یکی تغییر PH آن است به‌محض PH اسیدیته خون افزایش یافته و PH به ACD تهیه خون بعلت اضافه شدن محلول ACD به ۹/۶ تقلیل می‌باشد. در مدتی که خون در بانک می‌ماند بدن‌برد از این حدها PH به ۵/۶ به ۴/۶ میرسد. این سقوط مجدد بیان ترس آمده و اذ ره‌های کستروز در مقداری تکه و است بیشتر دایلی نیز تکستروز در آن‌های فهرته سوم کمتر از مقداریست که در ابتدا در خون بانک موجود بود (۴).

Buffer

خنثی شدن سنسی اسید سیتریک توسط مواد نامیونی خون (سپ)
کم شدن بیکربنات و افزایش CO_2 در خون بالکمیشود. هر گاه به شخص مقداری اسید سیتریک تری و کمی فعالیت مواد اتاموئی سبب کم شدن بیکربنات بدن و افزایش CO_2 میشود، و لیا CO_2 به سیستم افزایش تعداد و دمایه نفسی ی آزریه دفع میشود (اسیدوز متابولیک). ولی خون بالکم وسیله دفعه مثل ریه ندارد. و CO_2 درآن بالا رفته و به میزان زياد در خون سردر بالکم حل میشود. جنایه گذاری فشار آن تا 200 میلی متر جیوه می‌رسد. بسیار خون بالکم دچار اسیدوز متابولیک با اضافه اسید و تنفسی است.

فسفر غیر آلی در بسیاری خون طبیعی است و علت آن تجزیه فسفر آلی داخل سلول‌های خونی و تبدیل آن به فسفر غیر آلی است. میزان آن حدود 6 میلی گرم در 100 سانتی متر مکعب خون بالکم است.

پتاسیم در بسیاری خون بالکم بالاتر از پتاسیم خون بدن است و علت آن خروج پتاسیم از جدار کلیولهای قرمز در ریز سرما خون است زیرا جداش گلوبول قرمز در ریز سرما قابلیت پتاسیم را از دست می‌دهد. حتی میزان پتاسیم تا 40 میلی اکیولان در لیتر در آخر هفته سوم گزارش شده است، هر گاه خون را گرم کنیم مقدار نسبتاً زیادی از این پتاسیم دوبار به داخل سلول بر می‌گردد (3 و 4).

آمونیوم در خون بالکم بالا میرود و این مطلب بناتگی شناخته شده است. اگر خون کمتر از 44 ساعت کهنه باشد فاکتورهای انعقادی آن هنوز باقی هستند ولی در خون کهنه‌تر این فاکتورها از ریز می‌روند. از این جهت در دید رمان عیوب انعقادی باید خون تازه‌تر از ۴۴ ساعت را باکر برد.

بطور خلاصه تغییرات مهم خون بالکم عبارتند از:

1 - PH بایین بودن به نکته متابولیک با اضافه اسیدوز تنفسی.

2 - افزایش علت زنیه پتاسیم، امونیوم، سیرات، لاکتات، بروئیت و فسفات.

3 - فقدان یون کلسیم و بلاک‌ها و فاکتورهای انعقادی بخصوص فاکتور V.

در تابلو 1 این تغییرات منعکس است.
کمتر از 88 میلی گرم در یک تیر نشان داده است بعلاوه بدن بعلت داشتن استخوان‌ها
دخیره بسیار فراوانی از کلسیم دارد و در موارد نقصان کلسیم خون فوراً این کلسیم
بهرکت آمده و کلسیم خون را بالا می‌برد.

جرجیل دیویدسون (3) در 148 مورد ترانسفوزیون ماسیو (2 - 5 لیتر خون) می‌تواند کلرووارکاردیوگرافی کرده است و فقط در نزدیکی بیمار افرایش قابل به
مشاهده کرده و فقط با باین دویمار کلسیم تزریق کرده است. و هیچگونه عارضهای نیز
در این سری نداشته است. در این سری از بیماران جرجیل دیویدسون حتی بیماران 5
لیتر خون در عرض 14 دقیقه داشته است و هیچگونه تغییری در EKG نیز دیده نشد.
است و کلسیمی با باین بیمار نداده‌اند. چون تغییر فاصله QT با باید بود تلفن
قلب باشد پس شایسته اگر در این موارد از سری فوق الذکر نیز کلسیم بیمار حذف
میشود اشکالی پیش نمی‌آید.

دکتر که در مورد کار می‌کند که ترانسفوزیون ماسیو تقیب‌باجوز
کارهای روزمره آنان است تحقیقات بسیار جالبی در این مورد کرده و نظریات ارزندآی
اعراض داشته است. در تحقیقات اول معلوم شده است در سری بیماران که همراه
تراونفوسیون ماسیو کلسیم کرده‌اند مرگ و میر بیشتر از بیمارانی بوده که بدون کلسیم
داده نشده است و این دو سری از بیماران تا 20 شیشه خون دریافت داشته‌اند. این
طبیب در مدت 4 سال در 378 بیمار که بیشتر از 5 شیشه خون دریافت کرده‌اند کلسیم
تزیز نکرده است و در بیشترین قلیبو دویماری که از این بیماران مشاهده نشده است.

علت تعادل اسید و بیاژ:
امروزه عاملی که جهت ایجاد دیربستی پس از ترانسفوزیون ماسیو مورد
توجه قرار گرفته است به‌هم خوردن تعادل اسید و بیاژ است.
گفته می‌شود که خون باسک PH آسیبی در حدود 5/6 دارد که بلع نکردن اسید
سیتریک و لاکتوئک و بیروزولیک است و بیکرینت آن کمتر از طبیعی و 0/2 آن بالاتر از
طبیعی است. هرگاه این خون اسید به بیمار آمده تزریق شود سیستم بافری
buffer خون است. سیستم بافری در بدن خیلی قوی‌تر از PH
سیستم بانک اسپری در خون بانک استر زیرا بدن توسط ریه و کبد دفع کرده و توسط کلیه‌ها
ادوار اسید یاقوتی ترشح میکنند نیاز به افزایش موجود در اکسترا سلول و در داخل
سلول‌ها شکر اینکه تر افزایش وجود در انرژی است. در ترانسفورمیون آمیزه
فقط بیکراتن پلاسمای شش گردنده رقاق شده و لی
PH بعلت متابولیزه شدن سیترات سویون سدیم حاصل شده و آلکالوز متابلیک درروس
بوجود می‌آید. و لی در مواردی که ترانسفورمیون سریع به مقدار زیاد انجام شود
بخصوص بیمارانی که احتیاج به ترانسفورمیون مایع دارند حقماً خونریزی زیاد
داشته و احتمالاً در حالی شوک مبتلمار و بعلت به دروردی نسبی و انوکسی نسوج
مقدار اسید‌کامپن و پروپونکی خون آنها بالا رفته است و نیاز دارند به عبورش درخصوص
اثر، هیپوانتیلیسیوین و مهلگر کوزه همه میتوانند اسید‌کامپن خون را بالا گردند.
دریگر سیستم بافری بدن جنین بیماری قادر به کنترل و تنظیم PH نوده و
خون‌پاتیان PH می‌افتد و ایجاد دیرپسونی قلیاً دز تزرید بیمار می‌کند.
علت دیرپسون قلیاً را اسیدوز این بیماران میدانند. اودر بیمارانی
Howland
که کمتر از ۲۰ شیوه خون دریافت داشته و با گرم کردن خون و عدم تزریق کلسیم
مرگ و میر نرا کم کرده است و لی دریمارانی که بیشتر از ۲۰ شیوه خون داشته‌اند با
گرم کردن خون و عدم تزریق کلسیم رقم گرم و میزان ۰.۵/ ۴ فقط به ۳۸/ ٪. بیانی
آمده است بس برام این اسیدوز خونریز یک درنژ بیمارانی که بیشتر از ۲۰ شیوه
خون دریافت داشته اند اقدام به تزریق بیکراتن سود و خنثی کردن اسیدوز نموده است
و جهت هر شبند خونی که بیمار دریافت می‌کند (است/ ۴۴ میلی اکی و الین بیکراتن
سود به بیمار داده است و بندین ترتیب گرم و میر را تا ۸. بیانی آورده است (۴).
چنان که ذکر شد خون بانک دارای ۰۲ خمیلی زیادی است و بعلاوه اسید
سیریک خون بانک بابیکراتن خون ترکیب شده و تولید سیرات سود و گاز کربنیک
می‌کند پس گاز کربنیک بعاد ترانسفورمیون مایع دردنبی خمیلی بالا‌میرود و اینجا
امید به تهیه ریوی کافی بیمار جهت دفع ۰۲ اضافی و تنظیم بافرهای خون معلوم
می‌شود که توسط توصیه هشته است (۹).
۶- آمونیوم

افراش آمونیوم خون بالانک ممکن است در بیمارانی که ناراحتی کبدی پیشتر تعداد قابل اهمیت باشد و ایجاد اغماء کبدی نماید ولی گزارشی تابحال راجع‌بانشنده است باوجوداین به‌حفظ‌دربیماران کبدی خون تازه مصرف کرد.

نتایج و خلاصه

خطر مهم ترانسفوزیون ماسیو دیسرسیون قلیان بعلت خون سرد و نیز بعلت بهم خوردن تعادل اسید و براثر اسیدیت زیاد خون بالانک و آزاد شدن اسید‌لاتکس در اثربیدی برخوردهای نسجی در بیمار شوکه است. جهت جلوگیری از این خطرات خون باید گرم شود و نیز با بموک یوناسیون و خون به‌بیمار سعی در بهبود جریان خون اور و ممانعت از ایجاد انسحابی نسجی کرد و باتوجه به ریوی کافی کمک بدهد و گنگ‌دهاری تعادل اسید و بیاژنیمود. هرگاه مقدار مصرف خون بالانک خیلی زیاد باشد با احتمال انسحابی نسجی در کار باشد با دادن بیکربنات سود (24/2 میلی‌اکی ولان جهت هر شیش خون) به تعادل اسید و بیاژنیمک کرد. از تزریق کلسیم مطلقاً با‌ای‌دلاقی نیست کردن. عیوب انعقادی بعضاً ترانسفوزیون ماسیو را با خون تازه و پلاسمایی تازه منجمد باید برطرف کرد.

SUMMARY

The main danger of massive blood transfusion is cardiac depression due to cold blood and also due to acid-base imbalance which happens after transfusion of banked blood with low pH, and liberation of lactic acid in cases of poor perfusion in shocked patients.

To prevent this danger we have to warm the blood before massive transfusion. We prevent tissue anoxia by giving fluid and blood on time and try to maintain a reasonable circulation and perfusion.

A good ventilation is necessary to remove carbon dioxide and help the maintenance of acid-base balance. When banked blood is used in excessive amounts or whenever tissue anoxia is suspected, sodium bicarbonate (44.6 mEq for every five unit of blood) is given. Intravenous calcium during massive transfusion should be abandoned. Coagulation defects after massive transfusion are treated with fresh blood and fresh frozen plasma.
RÉSUMÉ

A) Le plus important danger de transfusion massive est la dépression du cœur.

La cause de cette dépression a duex facteurs qui sont très importants:

1- Le sang est froid.

2- Il y a un déséquilibre acido-Basique.

Normalement le pH du sang injecté est acide et en même temps si le malade est exposé à un état pu choc, nous avons une hypotension suivie par une mauvaise circulation des tissus et enfin, une libération d'acide lactique. Par conséquent l'injection du sang acide aggrave cette acidose métabolique.

B) Traitement et précaution:

Pour prévenir cette dépression cardiaque on doit tout d'abord, faire chauffer le sang; puis donner les fluides ou malade, pour améliorer la circulation et avoir une tension efficace qui peut irriguer les tissus et corriger l'anoxie tissulaire.

Une bonne ventilation pulmonaire est nécessaire pour l'elimination du CO2.

Si nous employons plusieurs bouteilles de sang et si nous supposons avoir une anoxie tissulaire, nous devons donner le bicarbonate de Na à dose de 44 milliequivalents par chaque 5 bouteilles.

L'injection de calcium, pendant que la transfusion massive est effectuée, est absolument inutile et on doit la supprimer.

Les défauts de coagulation qu'on peut voir après une pareille transfusion doivent être traités par injection de sang frais ou de plasma précongelé.
REFERENCES

2. Bunker J.P.,
 Anesthesiology 27:4, 1966: 446.
3. Churchil Davidson H.G.,
4. Howland W.S. & Schweizer O.,
5. Howland W.S. Schweizer O., Boyan C.P.,
6. Howland W.S. Schweizer O., Boyan C.P.,
7. Howland W.S. Schweizer O.,
8. Howland W.S. Schweizer O.,
9. Howland W.S. & Schweizer O.,