پرتو لازر و موارد استعمال آن در زیست‌شناخت

مدتی است که در روزنامه‌ها و مجلات با حروف درشت مقالات هیجان انگیزی راجع به اشعه لازر منتشر می‌شود که گاهی آن‌ها بصورت هیولایی ترسانگ و مسیله درمی‌گزارند. به همچنین وسایل مختلف و روش‌های به‌کارگیری این اشکال در مهندسی و علوم زیست‌شناسی بحث می‌شود.

باز هم‌فکری‌های مطرح شده در هر سال در زمینه استفاده از پرتو لازر در مطالعات و تحقیقات علمی به کار رفته است. لازر در زمینه‌های مختلفی از جمله کمپیوتر، فناوری اطلاعات، زیست‌شناسی و همچنین در زمینه‌های زیست‌شناسی دارای اهمیت و پیشرفتی‌هایی دارد.

کلیات

کلمه لازر (1) از حرف اول کلمات "تشکیل نور بوسیله انتشار تقویت شده اشعه" تشكیل شده است. "Light Amplification by Stimulated Emission of Radiation" و "Intensification de la lumière par émission stimulée de rayonnement" می‌باشد.
دانشکده برق شکی
تاریخ دانشگاه برزکی

چنانکه میدانی امواج نورانی و امواج مخابراتی (Hertz) هر دو جزء پرتوهای الکتروناتیکی هستند ولی بیان‌های این دو ثابت نمی‌شود. احتمالاً هر دوگانه نوسانات یک‌لامپری در دل هر دوگانه رشد می‌کنند و بوجود می‌آید و با فاصله هر دوگانه می‌تواند در بهترین بهینه‌سازی (Résonance) باشد میزان امواج را دریافت نمود. مورد استعمال خاص این اقلید درصد همه‌ای فرستنده رادیویی است که هر دوگانه از آنها دارای کناره‌های مشخصی هستند.

امروز کمک‌هایی طول می‌برد که به الگوهای امواج نورانی مصرف می‌تواند نمود. در حدود بیلیون‌ها است و تولید امواج کوتاهتر بلافاصله اشکالات فنی (یعنی ساختن نوسانات اشکالاتی خیلی کوچک) با اعیاد مرتبط به روش‌ها است.

این موانع و اشکالات سبب شده است که برای تولید نوسانات با امواج بسیار کوتاه راه‌های جدیدی جستجو نمایند. محققین برای تولید و تثبیت داشته امواج بسیار کوتاه پنجره استفاده از آنها و مکان افتاده بدنی به که از این اژدهای خارجی به اندام رژیم دخیل ماده و یک‌نگین الکترون‌ها می‌گذرد. استفاده از این استفاده است. این تبدیل از نظر کوتاه‌سازی معنی‌ارزه‌های هر رطوبت مقداری است و در ازای آن استفاده می‌شود.

اصول‌لیزر

فرض کنید که می‌خواهید نور یک‌لامپ را تولید کنید. برای شکاف زدن خیلی پریکست می‌توانید مسیر آن را صورت یک موج رادیویی که نکه گاه آن علامت نورانی است. با این حال، نوسانات الکترونیکی می‌توانند نور معمولی از لایه موج‌های مختلف تشکیل شده و تولید طیف و معنی‌داری نیز داشته باشند. امواج الکترونیکی که زیکه می‌بینند نورانی صادره‌سازی از بعضی جهات شیب به امواج است که روی آب کاملاً ساکن و هم‌مراتب می‌شود. هرگاه یک مشت شنا درباره باشیم که روی آب ساکن برجست جهت تأمین این شیب دریک این روش برای این نیازهای نمایند (با هم اختلاف زمان دادن) در سطح آب بهینه‌ترین دنیه (سرچ) تشکیل می‌شود که یکی پس از دیگری از میدان‌های (Cohérent) پس موضوع اصلی همان تولید امواج نورانی همگان و هم نواخته است که نمایش داشته خروجی تکنولوژی‌ها در امواج رادیویی هستند (شکل 1). درای توافق در این مسئله امکان‌ها از یکی می‌بینند نورانی بسیار و ابعاد معمولی استفاده نمود بله این منبع نورانی به‌ذلک بیان‌درکولی داشته باشند. در برخی موارد دیگر، خودت باشد.
نتایجی که تاکنون در علوم انرژی هسته‌ای بدست آمده نشان داده است که بیشتر
ظاهراً درمان نهفته است در سبب اشعه نور بیشتر نور نور را به‌طور
می‌کنند و سپس به عنوان صدیقلانی برابر قوی تراز شد نورانی که بوسیله یک عدسی همکا
متمرکز شدند.

(الف)

(ب)

(شکل 1)

الف - نور هم‌ناپایه‌های طوری نوسان میکند که متمرکز کردند آن شدت نور
بسیار زیادی در نقطه نزدیک به آن ریو دارد.

ب - نور غیر هم‌ناپایه نوسانات نامنظم بوده و در نتیجه تمرکز انرژی کمتر
خواهد بود. (C. Gibson)

برای فهم و توجه به پدیده‌های متوالی که در این صورت می‌گردد باز از قضیه کلاسیک
"سایه نوری" نورموجی شد و "سایه نوری" آنرا که برمکانیک کوانتیکی و فرضیه های
این‌که کواردیم پذیرفت. بعدها گیگن نیز ایست که آزمایش‌های نورانی یافته‌اند
مقدار انرژی $f \times h$ است که در آن f کوارنیک نور یا h دو برنامه‌ای بیشتر
(مقدارت بالایی است). کوارنیک انرژی پروتو های مختلف مساوی نیست و مقدار آن
برای هر یک از کوارنیک انتخاب است. کوارنیک انرژی پروتو های مختلف
$W = h \times f = mc^2$
بابی کوانتومی

به معادله دریافت که با سرعت \(C \) به سرعت میروردرکت کند و برای مقدار جرمی رابطه فوق صادق باشد. این در همان فوتون ایشتین است. از رابطه فوق نتیجه می‌شود.

\[
mc = \frac{h \cdot f}{c}
\]

و چون داریم \(\lambda = \frac{h}{mc} \) یا

\[
\lambda c = \frac{h}{f} = \lambda c
\]

همچنین اگر ذرهای بی‌مقدار در حرکت \(v \) با سرعت \(C \) در حرکت باشد حرکت آن معادل حرکت ارتعاشی پرتویی است که کوانتوم آن در رابطه \(hf = mv \) و با این حال می‌تواند به سوی آن در رابطه

\[
\lambda = \frac{h}{mv}
\]

یک صدقل کند ببیند دیگر هر ذرهای سنجیده با ارتعاشی مشخصات

همراه است.

انواع مختلف لازر

در حال حاضر سه نوع لازر وجود دارد: لازر جامد، لازر گازی و لازر الکترونی که هر سه نوع ایجاد نوریکه نواخت می‌شود. اما در طرزی که نوع پرتو آنها محصص خاصیت مختلف و وجود دارد.

- لازر جامد: الک: لازربایوتو قابل استفاده در تایز کاراکتر - توریستی ترین لازر جامد لازربایوتو

Theodre Maiman است. نتیجه بیشتر اولین کسی است که در سال 1960 لازر بایوتو Korad Corporation را بکاربرد. اولین سری الکتریکی خالص ویولن کروم (Cr:K) دانه‌ای خصوصی (آنتی‌پریودیک) در آن بکار رفته است. امروزه از یافته‌های مصنوعی استفاده می‌شود که آلودن به آلومین خالص منتشر می‌شود. همچنین در صید کروم (Cr:K)

می‌باشد ولی تجهیز آلومینیوم خالص (آلومین) مشکل بوده و عملیات زیادی برای تهیه آن لازم است.

قرارگیری: بطریکه‌ای که شک هزار لازر بوسلید یکدیگر سلکوولی‌های تاکنون یافته‌ها از

انرژی صورت می‌گیرد.

طبق نظرهای هسته‌ای هراتم در ترکیب انتزاعی کاملاً مشخص و وجود دارد که برای هراتم اختصاصی است. لازر بایوتوی شیمیایی کم دیگر در استفاده دستیاری است. (شکل 2)

تحلیل بیشتر جایگزینی کرک تنها داده است که یک اتوم مواد متداوم می‌شود. بنابراین انرژی

نورهای جذب کند وپس آنها پس ده دارد. یاد این مطلب را با این طریق توضیح داد:
الکترون اتم در ارتجاع انرژی بیان اثر اکتوبسیا را می‌برد و در موقعیت پس دادن و آزاد شدن

\[E_3 \]

\[E_2 \]

\[E_1 \]

\[a \]

\[b \]

\[\frac{h}{\lambda} = \frac{E_2 - E_1}{E_1} \]

\[(6943 \text{ \(A^\circ \)}) \]

(شکل 2) شیمی‌پزشکی پایه ترالازنرژی - ابتدا اتیا "پیه مشوید" (a) واز

حالت و ترالاز اولیه \(E_1 \) به ترالاز \(E_2 \) به ترالاز متغیر \(E_2 \) ویژه و منفی‌الاقل به ترالاز گامان \(E_3 \) می‌کند اثر انرژی آزاد مشوید که بسی

کنار شناخت نورانی مشوید مشوید (b)

انرجزی از مدار خارجی به مدار داخلی می‌افتد. قسمت اعظم انرژی جذب شده بوسیله اتم

بصورت پرتوهای الکتروماتیکی ضاد. بین جهانشکه انرژی دارای ماده‌ای است

بنابراین فرکانس اتمی صادره دارای ثابت و مشخص می‌باشد (طبق معادله پلانک و آویشته که

بان اشاره شد) در نتیجه انتها صادره از اتم معین دارای طرف کم‌کم بافت‌های اخلاقی خواهد بود.

معمولاً تمام اتم‌ها در هری سکن و استراحت هستند و تعداد انرژی آنها پایین ودر

حداقل اش (در واقع \(E_1 \) هر گدایه انرژی \(E_1 \) داده شود یونهای کرم موجود در یاقوت

درای زمان درایا و اجتاد انرژی \(E_2 \) می‌سرد وچون اتم مدت زدایی دارای پای‌ایادار تیم‌تواند

بماورد فوراً وامتیاصل \(E_2 \) به ترالاز اولیه \(E_1 \) بدل صورتش (به‌طور خاص)

درایای موقعیت انتها انرژی درایای را بصورت تشکیل یک بی‌میندکه درتفسیر که در اثر انرژیس

یاقوت است همانند یک صفحه نگاهی که با داده‌ها هم‌اکنون

اشاعه مرئی بی‌میده (اساس رادیوکیسی) اگر می‌توانند بازده راندمان تجربه (بهمه) را

باالا بپریم منوان تراز \(E_2 \) را محفوظ نگه داشت بطوریکه هم‌بایه از تراز \(E_1 \) باالا بنشده.

این پدیده اساس وبتای عمل ارزیست. انسجام‌که باین طریق برگشته‌شده‌اند

میزانند تقییت شنود بهانی بحثی درایای که مربوط انرژی سطحی کننده (به‌طور بی‌پایان‌محوری

و..
مثال بوسیله یک کلاسیب. اکلترون تحریکه شده که تحت تأثیر تشعشعات فوتونهای یونیزاسیونی قرار گرفته بپریده خود میتواند سبب تحریکه انتهای دیگرگرد و آنهاهای نیزدوبه خود فوتون (Avalanche) بتواند با درجه محراباوقت شود.

هر گاه یاقوت به سبک استوانه طولی (باتونه) باشد قسمت اعظم امواج نورانی آن در امتداد محوری یاقوت خارج میشود و فقط قسمت سبب‌کننده از این امواج بطرف جداری یاقوت تحرک شده و جذب میشود. در نتیجه این عمل اشعه اولیه وثانویه رویهم انبساط شده و در حین آن ایجاد میشود.

(آمپلیفیکیشن دو نور) (Amplification de la lumière)

بعلت هم‌اختلای وتوافق فازها وکوپالانه نورانی برآنگیرخته، نور خروجی هم‌مان وهم‌نواخت خواهد بود ودرنگی میتوان آنها بصورت دسته‌شماری خارج نمود که دراین انرژی وشکل نوکالاعاده زیادی باشد.

ایجاد انرژی زیاد باید شامل تقویت کننده مخصوص باشکه، دراینجا از جدارهای یاقوت استفاده میشود. بااینکار که دونوشت وکاملاً مواردی که انرژی نیمه‌شاف اندوده شده وسایاست، آن شاف‌های مستند. فوتون‌ها دفعه دفعه دفعه جهان این دوایی‌ها را طی می‌کنند وبااینکار اثریمی‌ساده را دوکلای دوی‌کشید تقویت می‌نمایند. تاکنون آنها در موقعیت ازین شفاف‌های نیم‌شاف Semi-permeable مانند (Monochromatique) وهم‌نواخت وشکل کاملاً مجمع وموازی خارج شوند. موضوع مهم پیماز یاقوت وانرژی آن سیاست. برای اینکاری میتوان آن یک لوله یا لامپ تخلیه‌ای (استفاده محدود). برای تزریق وارد نمودن فوتونهای بیشتر در بالاورای یاقوت (یعنی حفره) لامپ فلوئورسانت‌وار درسوارت جدار جانی شاف‌های یاقوت خارج می‌شود وکوپالانه باوضع مخصوص قرارگرفتن لامپ حداکثر فوتون‌ها وارد یاقوت شود. برای اینکاری میتوان لوله تخلیه وسیله یاقوترا در کانون یک آنرژی به‌صورت قراردات. میدانیم که این‌انگیزه شده را که ازین کانون فرستاده میشود در کانون دیگر متمرکز می‌سازد. (شکل ۳) همبستگی میتوان لوله‌های تخلیه بیشتر اینتریچ (باپیچیایی نور) فقط بتواند را درک گردد.

باید دانست که فرستادن اشعه یاقوت کافی نیست بلکه باید پنکش فوتونها وارد یاقوت نمود ویعبيل ضریب انكسار زیادی که دریاقوت وجود دارد قسمت اعظم فوتونها در آن وارد نمی‌شوند ونیز اکنون مقدار زیادی اشعه به‌معنی سیمان دردنبال جهت بازده دستکاره کم بوده وقدرت لازم برای پیمایش باکیفیت زیادی باشد.
تخليه یککه خانگان که بالا بخش تخلاهی بطوری ورزنه قرار گرفته انجمی لیکر (شکل 4) هرگاه اختلاف سطح تخلاه خانگان ضعیف باشد فقط یک فلزی واسی ماده در یا بیاوت پیدا شده واحده در تمام جهات منتشر میشود وی اگر اختلاف سطح کافی باشد امواج مجتمع بین آنینه هادوروده وازیکی از بدآورانه حذف یا بیاوت که نیم‌شناف

خانگان

(شکل 4)

اضافه ابر نParagraph

روی امواج (A=9800 1/6)

(شکل 5)

امت خارج می‌شود وتقربانیان انرژی دریکه مخربی بازیابی می‌پیشه خوارگه داشته وعملوداشته‌انه خارج شده موازی خواهند بود (شکل 6). در شکل 6 ساختمان اساسی وشماییک بک لازر
پ - لازر جاده باچه‌زار تراز انرژی - عیب لازر باشد تراز انرژی این است که انرژی

۱ - لامپ فلش بطول ۷۵ میلی‌سرخه با اختلاف سطح ۱۵ کیلو ولت کار می‌کند.
۲ - استوانه میلی‌سرخه فلشهای ۱۰ میلی‌سرخه در طرف زاست مقداری منفی که این است.
۴ - لیزر تراز دادرمی‌کننده لایت
۶ - رابط که سپهر تعیینی و فرستادن امواجی به‌منظور.

۲ - این انرژی فقط جمع کننده الکترونها است

به‌ویژه با ویدن ذوب باند. در‌لایزر باچه‌زار تراز (شکل ۷) ۴ قطب

۷ - شیمی‌یارگذاری باچه‌زار تراز انرژی یکه اتم H به تراز بالا پیمایی شده

اکر خود را بکه اتم نمونه منتقل کرده و به تراز E ۱

۸ - صورت می‌گیرد. (b) بین E ۳ و E ۴

۹ - شاهد خروجی نانو (n) نیز بین E ۳ و E ۴ وجود دارد

می‌تواند است. این نوع لازر از‌جمله انسک اسکل اورفورف (A.:orphe) باشد.
خالص ساخته می‌شود زیرا کمترین ناخالصی بلوری‌ای هم‌نواخت اشعه ۲ازیم‌درست.

برای این کار در حال حاضر این فعالیت با دو طبقه مکمل برگ جسم آلی وارد کرده و سپس جسم آلی را درالک حل می‌کنند این جسم تشکیل محیط لازر را به همراه مثال محیط محلول ‘بیلستون اوروبیوم’ درالک مناسب برای ایجاد اشعه ۲ازیم‌درست می‌باشد. انگشت‌های ام‌زع و محیط چون کاملاً یکنواخت است هم نواخت اشعه خیالی خواهد بود.

نوع دیگر اولترافشرات کلسیم مخلوط با ازیم‌درستی (CaWO۴) بطور مصنوعی ساخته شده است (+Na۴CaWO۴).

اتم اوروبیوم که ممکن است آنرا دیوود بلیستیک (لازر کالیوژنیو) بکاربرد و نتایج بیتری ذاتی است. البته طبق شاخص بسیار هشداریانی به شکل (اموروف) محیط مناسب برای تولید اشعه لازرنیم‌اند. امروز با تنظیمات و مطالعاتی که بعمل می‌آید کمتر ماده را می‌توان نرم که بوسیله آن توان اشعه لازرنیم‌آور کرد.

۲- لازرنیم‌سی (Lazer à gaz)

در نتیجه اشعه صادره هم فاز و هم نواخت نخواهند بود از آن رو حمل و حمل این استفاده از آن می‌پذیرد و گزینه‌های دیگر را حتی به خصوص که گازها دارای انرژیهای مجزا از یکدیگر می‌باشند.

گازی مانند نور را در جهت (شکل ۸) قرارهای زیر و پیشای زیر می‌باشند.

تیغه با استحکام سطح و موازی نیم‌شناف حرفه‌ای خواهد برای مولول ۳گاه‌ترمزای ایجاد اشعه دریم‌ور

(شکل ۸) - شنای لازرنیم (ال‌وی۱۰۱ (۱/۱))

با استحکام بسته نیست - (بسته کم جذب شدن فتوان و بوسیله گاز).

یک راه حل سیاره‌ای و اقتصادی برای اجرای پیمان بوسیله علی جوان دانشمندی برای دریم و پیشنهاد شد که سئوی اولین لازرنیم گردد.

جوان در حال مظور گاز نور از مخلوط با گاز هلیوم قرارداد. فشارگاز هلیوم در لوله
پیک میلیمتری چوب و نشارکار نیکون ۱/۱ میلیمتریجود میباشد (شکل ۸).
بکمک یک مدار جران آوارکاپس دراین مخلوط گاز تولید دشوار (تنخلی) میباشد.
الکترون‌های سرعت گرفته اتمهای هیلیوم را تحریک کرده و آنها نیز داکتی‌سازی مشابه است.
ولت (میسائنت). دراین نوع لزر نیکون باعث یولهای کم درآورنیک تاکتیش باشد. پس از شکاف‌های حاصله بین انرژی‌های هیلیوم و نیکون
اتمیهای هیلیوم بالاترین تراز انرژی هر یکی از E۴ (شکل ۸) و دو را بعد از تصادم (کلی زیون)
ماتمایه بدون انرژی نورود با اینها می‌تواند و ضریب انرژیهای نیکون در آن‌گیخته‌ی میشود
حالم این عمل بی‌درمان باید انتشار اشعه است. چون هردم نیکون در این زر از هر تراز
انرژی یک هفته‌ست صادراً میکند بنابراین تشعشع اشعه لازاریا نیکون بجایند طول موج تومار خوادهد.
عمل تقویت مانند لازاریتا نیکوتی بین دوئینه میکسد انجام میگیرد. لازاریتا
برایریاکرتی ترجمه دارد زیرا نوروداون ایجاد میکند درصوت‌کرده لازاریتا نیکوتی نور منقطع
تولید میشود.
عیب این نوع لازر کمی بازده (زاندان) آنتست آنا با اپلیکه‌های سرپیشی که مرور دراین
زمینه نصب می‌کند میکسد کوئن که زن‌پاتر نیکون. در
اتم‌روز مخلوط‌های دیگری مانند هیلیوم - گزینه را تحت مطالعه قرارداده‌اند. مخلوط
امشزه زن‌پاتر نیکون در توی تولید میشود.

۳- لازر نیکون هادی (Laser à semiconducteur)

اختراق شده ساده تروده و جای کمتری را اشغال می‌کند. نور آن یکنواخت و طول
موج‌های زبر قرمز تا تولید میکند. افزایش ترازی از جران کمتری به است میاید (تبدیل
مستقیم جران الکتریکی به نور). در این نوع لازر بطور نظیری باده بهبود می‌یابد. ایند
در صورتی که دراهمی جامد باده بیشتری یک درصد نیست و این برنگرین میزبان این نوع
لازر انت. با وجود این لازرنور دارای معایب است. راندان‌با حاره‌ست سنتی‌آرا ارتقا‌زدایی
دارد بطوریکه باید آن‌ها بسیار سر به سر نیز و بعلاوه قدرت نیز دستگاه‌های هتروژنیفی است.

ذکر کردن که لازما است که اخیراً موفقیت بسیاری برای تغییر وارکلسدان را
ایجاد نماید. یعنی مثلا نور قرمز با نور آبی یا سایر رنگ‌ها تبدیل می‌کند. این کشف جدید که
رام اسمکاترینگ (Raman - Scattering) و نامی‌می‌شود پیدا به سیاره‌ای است که اصول
پیچیده‌ای دارد.

مواد استعمل آشکار لازر
در این قسمت به چند سرد استعمل آن در صنعت بیولوژی و بخصوص در بیزشکی

اشتراه میشود.
1- مواد استعمال صنعتی - یکی از موارد استعمال مهم اشعه لازری به معنی تبدیل اجزایی از دستگاه‌های پیشرفته به سیستم‌های کاربردی است. با استفاده از یک میکروپردازه از نظریه واقعی می‌توان این کار را انجام داد.

(شکل 9 رادار لازری)

کیلووات در ده‌ثانیه می‌تواند ناشی از دستگاه‌های لازری با بزرگ‌ترین محاسبه نمود. قبل از اینکه شکست اشعه لازر را می‌توان به‌دست آورد، واحدهای بزرگترین میکروپردازه از نظریه بسیاری همگرا شده‌اند. در صورتی که ارتباطی از یک میکروپردازه تأثیرگذار نشان داده نشود، حاصل بی‌توجهی در عمل این نوع برای اطمینان و دقیقی در ابتدا میکروپردازه و چنانکه حاوی در جراحی هم از این خاصیت مهم‌تر استفاده می‌شود.

2- لازر در تولید و شیمی - از لازر در دو سطحی و میکروپردازه می‌توان استفاده نمود. از جمله می‌توان استفاده معیارهای متخصص پلیمرزاسیون (Polymerisation) ایجاد نمود ویا در محصولات پیچیده شیمیایی (پیچیده و اکسی) تبلاتش شیمیایی خاص بوجود آورد. با
شاعر قوی وباریک، لازر درپزشکی عناصر سلولی (مثل گلوبول ها) را با دقت تمام و بسرعت از بین برده بدون اینکه نسبی می‌کند دیده خراب شود. مسلماً بسیاری از سلولهای پوستی و داروئی که بحاج مطالعه عمیق هستند، همچون بکمک آخرالزمان خواهد شد و بعیدی همان باید گفت: "لازم آگاه شوید که این اجتهاد، خرابی در ایجاد داشت.

3. لازر درپزشکی - دسامبر 1996: محالی راجع به موارد استعمال لازر درپزشکی

ویولوژی درهای نیوریک. واشنگتن ورن اخبارنامه‌های مهمی شده است.

لازم در سیستم‌ها تجربی می‌بایست (M. Bessis) فرانسوی اشاعه لازر را برای آزمایش دروی سلولهای مفرد باکتریا. بدست داد، شاعر بسیار باریک و قوی می‌توان بعضی از این اشاعه میکروسکوپیک مخصوصی هدایت می‌شود تا در استعمال نسبی این شاعر. در اینجا نمی‌توان نکته نیکه بنابر هجوم را روز صفحه سالنیون زنده نشان نمایند. نگاهی در روی صفحه همان محترم است که در استعمال نشان این شاعر گرفته، بس از اینکه نظمه نورانی در روی محل دو مورد نظر برای شروع اعمال فشار این‌بار دفع انتخابی و مشابه عشک با نیازمندی.

سلولهای بینی‌گیر نبود اینکه خراب شوند و اشاعه را از خورد عبور دهید. سلولهای بی‌گمانه یا زنگی انسان را جذب می‌کنند می‌توان یک گلوبول چرط تحت تنش‌اندازه‌گیری واریز می‌برد. می‌بایست و همکارانش برآورده که انتخابی بعضی از از انتخابات سلولی موثر شده و سپس به‌بیان‌گر لازر این می‌والد و از آن راه بعمال متوالی معنا دارند در انتخابات سلولی زنده ادامه بی‌دیده‌نشدن ملاحظه می‌شود اشعار لازر در تجربه رهیفت و تجربه روی سلولها اتفاق رویش را روان‌سازی می‌دهد.

اصول زنگ‌آمیزی انتخابی سلولهای زندرود می‌توان روز سلولها سرطانی در موجود زندگی بداریم. هر گاه سلولهای سرطانی بعضی زنگ‌ها را ایجاد می‌کند کننده باید این امکان وجود داشته باشد که باعث لازم باتوجه به بروز مشکلات کرد بدون اینکه به نسخه سالم آمیزی برسد. همچنین درمان توده‌های بی‌گمانه (خلال ملانون و غیره) پوسته اشعه لازر و سورد مطالعه است.

(Meyer) لازر در پلاسم شیبکه - در حدود سال 1996 در سیستم خودآبی (Schwickerath) در دکتران لازر (Décollement de la rétine) بسیار مؤثر و پرازش است. تحت مراقبت مستقیم انتخابه که دسته اشعه لازر اطراف باریکی شورتند و نمونه و در حد پیش آنها را جوش می‌دهد.

آزمایشی بافتی‌سی خشک درنرد جراحات ناشا داده است که اعیاد نسیج پوسته
اشعه لازر عمیقی تر از شعاع معمولی بوده و سیبپارسیایی (چای زخم) که شبکه را به محل بی وابسته تکثیر می‌کند، برای استفاده از شعاع لازر معمولی نیست. استفاده از شعاع لازر معمولی نور در عملیات کولمان ریتین تا درایه تاریکی و رنگ سایه‌ای نسبت به شعاع لازر معمولی نور در عملیات کولمان ریتین بسیار در عمق بیشتری به داخل شما می‌کند و دیدن می‌کند. اکثریت بیشتری شبکه را به همان‌طور که در صورت استفاده از لازر الکترونیکی، نشان‌دهنده دارد. (Retro-bulbar) و تزریق شعاع لازری که معمولاً انجام می‌شود در گردشگری نخواهد داشت. باید توجه داشت که اگر شعاع لازر پیش از اندامه لزوم بکاربرده شود نمی‌تواند در داخل چشم خونریزی ایجاد کند و بایستی سرخ به شکل رنگ‌داندن، عمل می‌کند. اگر لازری از شعاع بطور دقیق به صورت سطحی به سطح شبکه و همگانشیون ته چشم دارد و یک موضوع در این صورت نیز غیرقابل مطالعه است. زارت (Zaret) و همکارانش (جامعه متعدد) اعلام می‌کند که باید امکان بیونیزاسیون نسوی را در نظر داشت با در نظر گرفتن کار برای لازر درپرشنکی ممکن است با خطراتی توأم باشد و در هنگام ازان بایست دقت و همراهی شخص نمود (شکل 1-الف).
دریکلا و درست شکل نقاط سباهی که خروش دیده می‌شود که لزیون‌های تولید شده در آن باندی بهای مختلف است. لکه‌های بزرگ سفید درست با مدت لزیون‌هایی است که بوسیله توس گزارن تولید‌شده است. بزرگ‌ترین لزیون درست با مدت باین سبب ایجاد شده که مدت تابش اشعه طولانی بوده و هیچ‌کنن کره‌ی چشم را حرکت داده‌است درست چپ لزیون‌های نقطه‌ای شکل بوده و بوسیله لازر ایجاد شده است. شکل. ۱- ب)

دریکلا و درست شکل نقاط سباهی که خروش دیده می‌شود که لزیون‌های تولید شده در آن باندی بهای مختلف است. لکه‌های بزرگ سفید درست با مدت لزیون‌هایی است که بوسیله توس گزارن تولید‌شده است. بزرگ‌ترین لزیون درست با مدت باین سبب ایجاد شده که مدت تابش اشعه طولانی بوده و هیچ‌کنن کره‌ی چشم را حرکت داده‌است درست چپ لزیون‌های نقطه‌ای شکل بوده و بوسیله لازر ایجاد شده است.

(شکل. ۱- ب)
پرتوآزر و مواد استعمال‌ان دربیشکی

شماره هشت

زید باشید تا بتوانید روی میدان وعاج (Email et ivoire) دندان اثر کنید. از‌اشتهای لاس‌دستان‌الیه پوسیدگی دندان میتوان استفاده نمود ولی با شکه دانست چون هر گزمه‌رئیسم نیست که بیان نیازعمیق اشعه‌پریش بینه‌نمود حفره پوپ (Pulpe) می‌کنم است آسیب به بینه. مطالعات و تحقیقات دراین بار ادامه دارد.

لایزر در پرحای - بیمارنریزی پیکمای سطحی و عمیق خیلی زیاد و مختلف هستند. چون در موقعیت اشعه لازر این سلول‌ها اثری را چند می‌پذیرد با برایداه گاه بطور مستقیم با بوسیله آندوسکپی بین بیمارنریزی دسترسی باشد میتوان دراین موارد اشعه لازر را جایگزین رادیوتراپی نمود. چندین مورد استعمال برای جراحی فرضیب صدری‌وشکم درخت بعضي شرایط بوسیله آندوسکپی برای لازر بیماری‌شناسه. دراین موارد بی‌خصوص پیدا می‌شود نمک است بیش‌ترین تخلیه‌پذیر. مزیت این نوع جراحی دراین است که خطر توالید نکروز درپانته‌سالین بیش‌تر می‌باشد.

سابر موارد استعمال - با این‌حال از‌اشتهای لازر تجربه‌های اسپکترو می‌باشد. قابل اجرا است و بوسیله یک بیوپسی سطع‌گذار کم‌میتوان پیش‌رفت با تولوزیک نسج را تعیین نمود. (شکل 11)

شکل 11: تجزیه طیفی با پیک (a) از برداشت سیارکمپنک بوسیله اشعه لازر (b) این شما نرود و می‌تواند راه‌گیری را نشان می‌دهد. نرود (a) از آمریکا (b) به سمت لازر بیرون آمدن (c) می‌رود. به‌علاوه از پیک بررسی قرار گرفته و پیشگیری از حذف می‌شود و حرارت تبخیر به صدرار (k) کلوون می‌رود و به پیش‌بینی تجزیه طیفی (c) مکان‌پذیری می‌گردد.
همچنین لازم‌های مشابه هم در تشخیص و بازرسی الیگوالان ها در استخوان‌ها و خون می‌باشد.

بعدی می‌تواند بود که اشعه لازره دیسکی بعضی از انسون شنای همه اثر می‌کند. مطالعات و تحقیقات در این زمینه ادامه دارد.

درخواسته با پیگیری که تعداد زیادی از خواص مفید اشعه لازره‌های سورد مطالعه است و گاهی انسان خودها در مقابل یک میکروسکوپ سیم بریند یا وجود این بايد توجه داشته اگر آن باشد یا دیدن دستگاهی قابل مبنا برای بیماری‌های چشم بطور آزاد درکننده پزشکان می‌گذارند ولی لایه‌ای فراگوش کرده که هنوز تمام مسائل بطور دقیق حل نشده است و از عوامل جهات وضع ارمزها در مقابل اشعه لازره‌های سورد این که در خارج کرده اشعه ایکس است که آن را بسیار درخشان و سواد استعمال متعدد آن بعضی از خطرات اشعه ایکس را ازنظر

پوشانه بود.

مآخذ:

1- دکتر فریدون ستچرخانی. نیکولس و سواد استعمال آن در پزشکی. پرتوشناگی و انرژی شرکت سهامی چهار لاراژ 1339

