بروسي انواع هموگلوبین ها با سیله هموگلوبین گرام

دکتر محمد مهدی افلاطونی

هموگلوبین از نظر شیمیایی یک نوع کرومپوتید است که از هک اسکلت بروتینی بدون رنگ بنام گلوئین و چهار مولکول ماده رنگی بنام هم تشکیل بافته است. هم از ترکیب یک اتم آهن فرصتی پروتئین نرمی، نرمی و بوجود می‌یابد. آهن هم بی‌حال از پروتئین از حلقه پورفينیک چسبیده و معمولاً دارای دو و ان‌های اصلی که بدوانته پروتئین می‌باشد و دو والانس فرعی است که بگاهوین و اکسیژن محل می‌شود.

هم برای تمام انواع هموگلوبین‌ها جه درشت نمایان و درساير پستانداران یکسان است و هنگام اکسید اکسید شود بدی به‌هادایی که آهن آن سالم تر فیت است مشود. گلوئین یک نوع پروتئین است با وزن مولکولی 667 که مانند تمام بروتین‌های از ترکیب چند امید آمینه ساخته شده و ترکیب‌های مختلف این امیدهای آمینه است که انواع مختلف هموگلوبین را بوجود می‌آورد. هموگلوبین طبیعی مجموعاً از 54 مولکول امیدآمینه برتپیل زیر تشکیل شده است:

- لیزول 44
- هیستیدین 38
- آرسنیل 12
- آسارازول 50
- تیروتون 33
- سریل 32
- گلوتامیل 33
- پروپیل 28
- آلانین 27
- سیستئین 5
- والین 32
- میوئسیل 74
- تیروزین 13
- فنیل آلانین 30
- تریتوتیل 6
- گلیسیل 40

* استادیار بخش آزمایش‌گاه بیمارستان رازی
عمل هموگلوبین: هموگلوبین یک پیگمان رنگی تنفسی است و مامورساندن اکسیژن باعث و گرفتن CO۲ از اعضاء و رساندن آن به متابالیسم. اکسیژن هوای تنفسی با هموگلوبین ایجاد ترکیب فازای اکسیمیاک‌های هموگلوبین میساید که آهن آن دووظرفی است و این فرصت عده هموگلوبین باسایر کرومروپتیدها مانند کاتالاز، براکسیداز،۱کروم میساید که با اکسیژن طوری ترکیب می‌شوند که طرفیت آهن تغییر یافته و ایجاد ترکیب باپیداری میساید.

هر اتم آهن هموگلوبین حداقل یک مولکول اکسیژن را می‌تواند نقل کند و چون یک مولکول هموگلوبین دارای 1/60 سایزی است هر یک گرم هموگلوبین می‌تواند ۳۴ آهن را در شرایط متعارف (۷۱ سانتی‌متر جیوه فشار و صفر درجه حرارت) جذب نماید. ۱۰۰ سانتی‌متر مکعب خون که دارای ۱۵ گرم هموگلوبین است می‌تواند ۵۰۰ × ۱۵ گرم آهن را جذب کرده و باکسی هموگلوبین تبدیل نماید. ۲۰ سانتی‌متر مکعب اکسیژن را طرفیت تنش‌نطیه‌گی کند. اکسیژن خودرا از دست داده و اکسیژن آن تبیین اندازه‌بندی با سه شوی نشان می‌دهد با ابزارین عمل اکسیژن‌ایون هموگلوبین عملی است دوجانبه و پس بوضع فشار منطقه‌ای تغییر ناپذیر است.

در نسوج چون فشار CO۲ زیادتر ایندیکرسکیا با هموگلوبین ترکیب شده و بوسیله خون وردیدی بی‌حیا بچه‌های زیاد شده و در آنها چون فشار ایندیکره کربنیک اکسیژن تنفسی کمتر از فشار CO۲ ترکیب شده با هموگلوبین است CO۲ آزاد شده و باهوی آن از ولای خارج می‌گردد.

این ترکیب هموگلوبین تنش اساسی را در عمل تنفس وقتی اینها می‌نماید. با اینکه ناپدید شده که املاح مس و کالری نیز جزء پیگمان‌های تنفسی بوده و در عمل تنفس بافتی دخالت دارد. و باعولا هموگلوبین علاوه بر اینکه درعمل تنفس دارد مانند یک تامیون عمل نموده و از استودز جلوگیری می‌نماید.
در وسط پایه و انتهای پایه یک صفحه آن قرار گیرد.

۳- پایه را بیان کنید و اطلاعات در اطراف قرار میدهید به طوریکه پایه‌ها در محل‌های
تامیون باشد. با انرژی کاهش و طبیعت باتری به‌طور مداوم آن‌ها می‌شود.

۴- جریان برق را برای مدت ۱۸ ساعت باشد. ۵ میلی‌آمپر باتریکمیک و
میکروکنترلر که در کنترل کرده تا اگر انتخابی که گیاره برطرف
گردید. پایه‌ها در اطراف قرار داده شوند که محل‌های نقطه‌گذاری شده‌اند.

درست قطع منفی قرار گیرد.

۵- جریان را قطع نموده و ۳ میلی‌آمپر مکعب از محلول هموگلوبین بیمار را
در نقطه قوی‌تر، ۳ میلی‌آمپر مکعب محلول هموگلوبین شاهد را در نقطه باینی برای
کنترل قرار میدهید و مجدداً جریان برق را برای مدت ۱۸–۱۶ ساعت به میکروکنترلر و
رگ آمیزی بالاصله آنرا بیاید ۱۵ دقیقه در صحنه محتوی رنگ آمیز برفی میکهد این.

۶- برای رنگ‌بری دوبار نوار را بامحلول ۵% اسیدسیست شته و سپس بهدخت
۱۵ دقیقه در محلول ۵% اسیدسیست که محتوی ۳% اسیدسیست دارد قرار می‌دهید
سپس آنرا با آب مفت شته و بین دو کاغذ آپ آگه خشک کن خشک میکریم به همان‌ترین‌نوار
آماده خواندن است و می‌توان با مقایسه با شاهد طبیعی، غیرطبیعی یا
آنرا تحقیق داد.

آنچه بهبود ضرر عمل رعایت شود یکی از به‌کار
گرفته ثانیاً یک شاهد حتی بر روی نوار برای کنترل قرار داده شود ثانیاً از محلول
تامیون به‌این سه با استفاده نشود رابعه چون هموگلوبین گرام رون گذشته تایپ
حرفیه الکتروفورزی مطلق را نشان نمیده اما لازم‌های هموگلوبین گرام به‌بار
با هموگلوبین شاهد می‌گذرد. شاهد ضمایه شود.
از مقایسه هموگلوبین‌های متنوع و هموگلوبین‌های مختلف تیبیت می‌توان که:

1- سرعت مهاجرت الکتروفورتیک هموگلوپین‌ها برتیب زیر است:

\[E > S > D > G > F > A > K > J > I > H \]

2- این نظریه امکان می‌کند که برای نوار ایجاد شود که در

این‌صورت هموگلوپین‌های خالص و هموگلوپین‌های خالص باید ارائه شود.

اگر لحاظ باید شاهد (هموگلوپین‌های A) مطلب داشته باشد هموگلوپین‌های خانوادگی آزمایش از نوع A است و اگر تطبیق نکند غریبی بوده و باید با هموگلوپین‌های غریبی مشابه شده آزمایش گردید تا پیوند برخی نوع آن‌ها تعمیم نمود. اگر

یک نور در نشان داده که با هموگلوپین‌های مطلب داشته باشد دیده شود معلوم شد مایکس‌کنون مورد آزمایش متعلق به شخص است که دیوار بیماری هموگلوپین‌های غریبی است. مطلب

و غیره... اگر لحاظ دو عدد باشد خون مورد آزمایش دارای هموگلوپین‌های سایر هموگلوپین‌های غریبی است. غیره...

و هتروژیگوت می‌باشد. اگر یکی از الکس با هموگلوپین‌ها مطالب داشته و دیگری غریبی باشد. مطلب ندارند F.A., C.A., S.A.

باینی داشتند و یا دارای تظاهرات ایلی خفیفی می‌باشد و این نوع هموگلوپین‌های معمولاً در حاملین زن ارثی بیماری دیده می‌شود.

اگر هیچ‌کدام از لحاظ یک‌تایی هموگلوپین‌ها مطلب نداشته باشد و هر در نوع هموگلوپین‌های غریبی است واژه شکل نام

Etat double hétérozygote

3- در الکتروفورز روی کاغذ به‌طور هموگلوپین‌های که لحاظ کومیک در

\[A_1 \rightarrow 3/4 \]

محوروار پاکت E بوجود می‌آید که آن را G و مقدار هموگلوپین‌ها A2 از هموگلوپین‌های با کمیت افزایش نسبتاً افزایش در حاملین بیماری تالاسمیک افزایش می‌باید. افزایش افزایش A2 بپدیدا در نوار A2 خود دیل بوجود افزایش هموگلوپین‌های

4- ممکن است لحاظ هاچی بر روی نوار ایجاد شود که مربوط به هموگلوپین‌های
نباشد بلکه وجود پروتئین‌ها ی دیگری که ممکن است باهمولیزات هرمان باشد آن را بوجود آورده باشند. محل این لکه تردیک هموگلوبین A قرار گرفته است و با هیچ‌یک از لکه‌هایی که با شاهدهایی از هموگلوبین‌های مختلف تهیه می‌شوند مطابقت ندارد.

<table>
<thead>
<tr>
<th>شماره</th>
<th>هموگلوبین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>A I</td>
</tr>
<tr>
<td>3</td>
<td>A S</td>
</tr>
<tr>
<td>4</td>
<td>A E</td>
</tr>
<tr>
<td>5</td>
<td>A C</td>
</tr>
<tr>
<td>6</td>
<td>A F</td>
</tr>
<tr>
<td>7</td>
<td>A G</td>
</tr>
</tbody>
</table>

شکل 2

هنگر رگولت

<table>
<thead>
<tr>
<th>شماره</th>
<th>هموگلوبین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C S</td>
</tr>
<tr>
<td>2</td>
<td>E F</td>
</tr>
<tr>
<td>3</td>
<td>S F</td>
</tr>
<tr>
<td>4</td>
<td>S F</td>
</tr>
</tbody>
</table>

شکل 2

اتات دوبله هتروژیجئت

Downloaded from tumj.tums.ac.ir at 18:37 IRST on Friday March 20th 2020
هموگلوبرین طبیعی و هموگلوبرین های غیر طبیعی و بیماری‌های ناشی از آن:

۱) هموگلوبرین طبیعی. در بزرگ‌تر اشخاص سالم و بالغ وجود دارد و در برای مداخله‌های قابل‌توجه متقابل‌تر است و با تجزیه‌شدن از آن، جزئی از بنا به این که این ارتباط بوده که ایزولاسیون ندارد. تجزیه‌ای آن در محلول‌های نمکی غیظ کم است. سرب‌های مهارکان، نوروزی آن از هموگلوبرین ۱ کم و یکوار F یک‌واز است. در شرایط سالم معمول شده که هموگلوبرین A نیز یک نواخت نیست.

برای این‌که یک مبدا دو می‌آزمایش وجود دارد.

۱- از المی‌شایی یک الف در برای مراقبت‌های در حدود ۱/۹ هموگلوبرین خون سالم تغییر ماهیت ندارد و دست نخورده باقی می‌ماند که به عنوان مقدار کمی هموگلوبرین ۱ می‌باشد.

۲- از می‌شایی اینوهروشمزیک ب به هموگلوبرین گرام داخلی و یک نواخت نبودن هموگلوبرین A رابطه‌ای در هموگلوبرین‌هایی که Moor Peiner مشخص می‌باشد، و pH اسید انجم داده‌اند، رابی مش و دو قسمت و جین الکتروفوریک برای هموگلوبرین A بی‌داده‌اند. ت جابی ای خیلی دیق تک هلالیت در محلول‌های نمکی غیظ که بوسیله Derrin و Roche ۱ و A نتان داده‌است.

Schapira و Dreyfins در آزمایشات متا‌پلیکی که بوسیله با وارد کردن آهن رادیو آکتیو در بدن انجام شده قسمت‌های مختلف هموگلوبرین‌های مختلفی مشخص شده است.

فرق میان هموگلوبرین S و هموگلوبرین A اکس هموگلوبرین S نسبت باکسی هموگلوبرین A خالی‌شکن کمتر است. اما در مواردی که اکسیژن خود را در روند انشابی آزمایش، نزدیک به حدود سالم نماید، آن خیلی کمتر از هموگلوبرین A است به‌همین سبب موجب تغییر شکل گلوبولهای قرمز شده و افزایش قطع‌شدن آن‌ها باعث مشوی (گلوبول داسی شکل) و درگیری گاهی موئینترمبوز نتیجه می‌کند.

وجود این هموگلوبرین در خون در حال هموگلوپتیک تولید پیشیگی در شرایطی داسی شکل می‌کند.

در بانوسیتو‌پژباک خونی فعال‌رس که بیماری امراضی و مخصوص سیامان است در
فرم هموگلوبین که هموگلوبین S بصورت خالص در خون دیده می‌شود با علائم بلئیعی کم خونی هملوکیک، عظم طحال، اولریاکومیته‌های ساق و رگه‌ای اختلالات قلبی-بندهای خونریزی‌هاو داخل چربی‌های آنوریسمهای کوچک شریانهای رنی و هم‌مرطوبی و آریسمی های سینوسال قلب، تناکی‌کاریی مشخص می‌گردد.

گلوله‌ای فرم فاسیترم که بسته فاسیترم‌ها بخش خویشان بخشی مشخص می‌شود. مواردی از جمله اوراسیا، پاراکنتیوز، نزدیکی و نزدیکی و نزدیکی، اوراسیا و افریقای شمالی، غیر مستقیم خون از علائم مشخص آزمایشگاهی آن بیمار می‌رود در رادیو و ترکیب افتخارات تکنیکی سر استخوان‌های ران و بازو و سایر استخوان‌ها وجود دارد.

هموگلوبین‌ها در هم‌مرطوبی با تنشیخ هموگلوبین S تشخیص بیماری را محرز می‌سازد.

فرمهای هتروژیکت و فرم‌های متفرغ هموگلوبین S و علائم کم‌تری از فرم هموگلوبین S می‌باشند.

۲ هموگلوبین F یا فکال به جنین وجود و وجود ۲۵٪ هموگلوبین را تکمیل می‌دهد. رفتگی هموگلوبین F جای آن را می‌گیرد. طلوی کدرشخص بالغ، و سالم فقط ۱٪ از هموگلوبین جهان را هموگلوبین F تشکیل می‌دهد.

وچجع تجاوز آن از هموگلوبین A از این قرار است اول مصاحبه آن در موارد قابلیت برای بیشتر از هموگلوبین A می‌باشد که بعلت وجود یوزولوژی در pH و تنظیم pH ایزو کنترل این فرم‌ها در pH ۷.۶ و میباشد. تا حد سرعت مهاجرت الکتروفورماتیک هموگلوبین F کمثل از هموگلوبین A در pH ۷.۶ و تنظیم pH ۸.۵ و میباشد. این هموگلوبین در بیماری ارثی تالاسی افراشی می‌باشد.

تالاسی؛ به شکل دیده می‌شود. دیده می‌شود. Mineur و Majeur شکل هویزیکت که از نظر اثری هموگلوبین F و هموگلوبین S بیماری زایان در خون بیماران دیده می‌شود.

علائم بالینی: آنی هملوکیکی به شدت مزمن که از اوان کودکی شروع می‌شود عظم طحال. قیافه مغولی از این اثرها منتشر می‌شود. آزمایشگاه یک کم خونی هپاتیت و کلسترول آن سبیل و اثرات و بافت را نشان می‌دهد. محتوت گلوبولی گالبین افراشی یافته اما اطمینان بودن آن تحقیق را رد نمی‌کند. افراشی مقاومت گلوبولی شکل خاصی است بدلیل که شروع هموگلین تغییر نیافته ولی کامل شدن هموگلین افراشی می‌یابد طولی که حیات در آب می‌گذیر.
هموگلوبین کامل نمی‌شود.

رامین گرگانی: در استخوان‌های بینی Diploë بی‌پدید باربر ریزهای افرایش‌یافته و طبیعی‌شده تارهای ماهوت با کمک موجود است. در استخوان‌های باند می‌توانند افتیاد نکنند و از راه‌های زیاد نشان دهند. Richi Greppi Michelی به‌نوبه از نظر زندگی می‌پیدا کند.

هتروژیگوت بودن و عوارض هموگلوبین F باینی است. عللت بالینی مهمی ندارد و فقط کم خوی مختصری را نشان نمی‌دهد و از روز عالائم آزمایش‌ها بخصوص تجسس هموگلوبین F الکتروفورژش آنها می‌شود.

Homozygote H in اسطروپوزیتیا مادر زایدینی می‌تواند که پس از طحال برداری از بین میرود. قسمت هموگلوبین C در سیاه‌آریکان کنف ندهد. Dariya بار الکتروشیمی مشت تیستی بیشتر هموگلوبین S است و تنها ایزوکشتیک آن بالاتر منشا بیان در مهارت الکتروفورژیک آن در محیط سطحی می‌باشد و با تعبیر تقاضایی نیز از هموگلوبین را روت نوازی.

از آنجا که هموگلوبین C در مخلوط همانی غلیظ بر عکس خوی زیاد بوده و از هموگلوبین A نیز بیشتر می‌باشد وجود این هموگلوبین در خون لیپه هموگلوبین C می‌شود.

هموگلوبین C از نظر زنینی‌دانی بسته هموگلوبین F و هتروژیگوت هم. شناخته شداست.

 kształت شکل CC که منحصرا در سیاه‌آریکان دیده می‌شود دارای علائم بالینی زیراست. شکل CC که منحصرا در سیاه‌آریکان دیده می‌شود دارای علائم بالینی زیراست. شکل CC که منحصرا در سیاه‌آریکان دیده می‌شود دارای علائم بالینی زیراست.

فرم C دارای هیچ‌گونه تظاهرات بالینی نبوده و در سیاه‌آریکان بالینی نبوده.

فرم C دارای هیچ‌گونه تظاهرات بالینی نبوده و در سیاه‌آریکان بالینی نبوده.
<table>
<thead>
<tr>
<th>A</th>
<th>مقاومت تهیه‌رگه‌ای در برابر مواد قلیانی</th>
<th>resistance d’alcaline denaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>متابولیسم الکتروفوتیک</td>
<td>mobilité électrophorétique en PH 6/5</td>
</tr>
<tr>
<td>C</td>
<td>سرعت مهاجرت</td>
<td>mobilité anodique a PH 8/6</td>
</tr>
<tr>
<td>D</td>
<td>حلال‌های حبرگویی‌های احیاء شده</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>سرعت مهاجرت</td>
<td>migration per chromatographie</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>H</th>
<th>G</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>S</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
میگرد.

هوپالوژین‌های

از نظر بالینی درای علامت برای کم خونی فعالی‌تر است

مپته تئوریه‌ای نان داده و در تغییر بنمایی این بنمایی ممکن است

کمتر از کم خونی فعالی‌تر دیده می‌شود. الکتروفورزه‌ها و S و C را

بیهویی نشان داده و در تغییر بنمایی کم بسونی می‌نامند.

4. هموگلبین S

از نظر سرعت مهاجرت الکتروفورتیک دارای سرعتی

حمایت از این نظر مجزا می‌شوند آنها پوشاک الکتروفورز مقدور نیست و یا تست

پوشاک خاصی حالات در مدولهای نقی کم یا تست

آن دو را می‌یابان از هم می‌بایزند نمود.

س یا شکل هتروژیگوت عامل بالینی نشان‌دهد

آن بویل الکتروفورز است که می‌توان این نوع هموگلبین‌ها را نشانده فقط تا کنون

چند مورد در چند فامیل انگلیسی ایرلندی هندی امریکایی دیده شدایست.

5. هموگلبین E: که در روی نوار الکتروفورز لکه آن را می‌یابان و C و S هموگلبین‌های

می‌یابان این الکتروفورز می‌تواند در حدود 13٪ جمعیت سیام و همچنین عددای از

مردم سیلان اندونزی (جافاریا) برم حامل هموگلبین E می‌یابانند.

در شکل هتروژیگوت E یا پیاز کم خونی میکروسیپ می‌تواند با گلبول

های آن سیبیی دارد در شکل هتروژیگوت هیچگونه علامت دیده نمی‌شود فقط با

الکتروفورز می‌توان آنها را بازشناخت.

6. هموگلبین G

که از نظر خواص الکتروفورمایی شبیه به هموگلبین‌های

بوده و که آن دو به‌طور کامل دسته‌بندی می‌شود و برای تشکیل ایندز از هم باید از سایر

خواص آنها استفاده نمود (در جدول خواص آنها که تاکنون شناخته شدایست بخوبی

مشخص شدایست.

هوپالوژین‌های

هم که در افریقای غربی و آمریکای شمالی دیده شده‌اند SG هموگلبین

و هتروژیگوت GG دارای علامت کم خونی است. FG شکل هتروژیگوت دارای علامت کم خونی است.

هموگلبین‌ها یکی یکی از جنگ مورد تاکنون گزارش نشد و در ذکر

منصب آنها خودداری می‌شود.

References

Mial J. B. (1958) "Laboratory medicine - Hematology", Mosby, St. Louis.

Nematollahy, (1942), "Physiologie" Tab-Ketab, Teheran.

Lehmann, H. (1962), The pathology of globin synthesis, Triangle The Sandoz Journal Of Medical Science Volum No. 8