A Simple, low Cost and Fast Improved Fluorimetric Method for Histamine Measurement

ABSTRACT

The well-known fluorimetric method for histamine measurement which is one of the common methods in diagnostic laboratories was modified to accelerate and facilitate measurement of serum histamine levels and decrease the costs and restrictions.

The modified method needs only 1 ml of whole blood (or serum) instead of about 10 ml in original method which is difficult almost or impossible specially for children. In addition, very small amounts of the expensive materials are needed and the samples are saved for about 15 days in -20°C which makes no significant changes.

Because in most cases, sample can not be read at sampling day, the saving possibility is an advantage for improved method.

Key Words: Histamine, Serum, Fluorimetric method.
مواد و روش‌ها

مواد:
- بوتانول، n-هتان، پرکارنیک اسید ۶۰٪، هیدروکسید سدیم، ارتوتیتانیدن (جفت‌بلوی‌های متغیر)، فلورید سدیم، اکسالات کلسیم، سرم ۲۰٪، کلرید اسید، و اسید کلرید اسید هیدروکسید سدیم، ستمت از Merck، هیدروکسید سدیم و اسید کلرید اسید هیدروکسید سدیم از Sigma، میکروکوپات Perkin-Elmer، دستگاه DSC۲ دندانگاه فلوروری‌بی‌اکسید

روش‌ها:
روش ساخت محلول‌ها و شرایط تغییرات آنها:
(1) ارتوتیتانیدن (۱۰۰ mg) در همکار مصرف می‌شود. در هر ۱۰ ml آب رسانده می‌شود. شکل جامد و محلول تهی شده آن در ۴۰ سانتی‌گراد در طوفان بخار شده و رنگ تغییر می‌کند.
(2) هیدروکسید سدیم (۵ M) در هر ۱۰ ml آب رسانده می‌شود.
(3) اسید کلرید می‌شود. در هر ۲۵۰ ml آب رسانده می‌شود.
(4) هیدروکسید سدیم (۱ M) که با NaCl ۱ میلی‌لیتر می‌شود است. در هر ۱۰ ml آب رسانده می‌شود.
(5) اسید هیدروکسید (۳ M) اسید کلرید نسبت به حجم ۲۰٪ در هر ۱۰ ml می‌شود.
(6) اضافه کردن NaCl ۵۰٪ در هر ۱۰ ml آب رسانده می‌شود.

در طول سال‌های متوالی روشهای متعددی از جمله بواسور (2)، بواسور موتوکسی (3)، روشهای رادیو نامریزی‌بندی (4)، برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (5)، برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (6)، و برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (7) استفاده گردیده است. برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (8) استفاده گردیده است. برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (9) استفاده گردیده است. برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (10) استفاده گردیده است. برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (11) استفاده گردیده است. برای اندازه‌گیری غیره، تغییرات فیزیکی در HPLC (12) استفاده گردیده است.
روش اندداز گیری هیستامین با فلوئورومتری:

با بهداشتی روش فلوئورومتری استفاده انجام می‌گیرد. در ۱ میلی‌لیتر نتیجه جهت، رنگ‌داری این حجم از نمودنی بر اساس استفاده از اسید کلرید گردن که با فلز نیترز مخلوط می‌شود، مخلوط می‌شود و اسید کلرید گردن با فلز نیترز مخلوط می‌شود. نمودنی احتمال می‌گیرد.

نمونه های سری:

نمونه خونی در لوله‌های شیشه‌ای کوچک (اسید شور خشک) جمع آوری می‌گردد. سرم با استفاده از سانتریفیوژ به مدت ۱۰ دقیقه در ۳۰۰۰ دور بر دقیقه تا پیش‌های شیشه‌ای در داخل لوله‌های شیشه‌ای با ستون فلزی متصل شده تا نکات موجب نفوذ و ۲۰۰ میکرولیتر (mg/ml) برای قرار نشان نموده می‌شود. محدوده حساسیت ۲۰ mg/ml از سانتریفیوژ گردید. پس از سانتریفیوژ، میزان تکثیر بار دیگر با آراسی به میکروبریزهای پای انیتی دکتان در شرایط ۲۰ درجه سانتی‌گراد.
قرانت گردنی در دو لوله باشیمده در دمای آزمایشگاه (21-25°C)، به ترتیب برای 1 و 3 ساعت نگهداری و پس از آماده سازی قرانت گردنید.

7- بررسی امکان نگهداری نمونه ها. به منظور بررسی امکان نگهداری نمونه ها در مرحله اول از 10 داواتل مقدار مثلاً (20-40 سال) نمونه های سرم کرده شده و به 4 قسمت تقسیم گردید. نمونه‌های اول در روز نمونه‌گیری آماده و قرانت گردنید. نمونه‌های سرمی 2 روز به صورت دست نخورده برای گردنیدن در مرحله دوم از 10 داواتل مقدار مثلاً (20-60 سال) نمونه‌های سرمی کرده شده و به 4 قسمت تقسیم گردید. نمونه‌ها با اعداد 1 و 2 و 3 و 4 نمونه بعنوان حدود آن‌ها مانند برای گردنیدن نمونه‌های سرمی اول در روز نمونه‌گیری آماده و قرانت گردنید و نمونه‌های سرمی دوم در ده روز از مدت 20-25°C به ترتیب برای مدت 1 و 2 و 3 و 4 روز در دمای 20-25°C دست نخورده و در حین شرایط نگهداری شدند. برای آماده‌سازی قرانت گردنیدن یک اجزای‌گردن، پذیرش و میانگین نتایج مورد استفاده قرار گرفت.

نتایج

1- بررسی کمترین میزان قابل اندماه‌گری: کمترین مقدار قابل اندماه‌گری هیستاکریت و در صورت اصلاح شده یا ناپاسخ (agreement) گردنی مقدار مثلاً (21-25°C) بررسی گردید. در دو روز از زیر حساس درصد مقدار مثلاً (20-60 سال) نمونه‌های سرمی به صورت دست نخورده برای گردنیدن در مرحله دوم از 10 داواتل مقدار مثلاً (20-60 سال) نمونه‌های سرمی کرده شده و به 4 قسمت تقسیم گردید. نمونه‌ها با اعداد 1 و 2 و 3 و 4 نمونه بعنوان حدود آن‌ها مانند برای گردنیدن نمونه‌های سرمی اول در روز نمونه‌گیری آماده و قرانت گردنید و نمونه‌های سرمی دوم در ده روز از مدت 20-25°C به ترتیب برای مدت 1 و 2 و 3 و 4 روز در دمای 20-25°C دست نخورده و در حین شرایط نگهداری شدند. برای آماده‌سازی قرانت گردنیدن یک اجزای‌گردن، پذیرش و میانگین نتایج مورد استفاده قرار گرفت.

درصد بزایبافت

4- مقایسه دو نوع نمونه خون کامل و سرم از جهت میزان هیستاکریت: از نظر میزان این دو نمونه از جهت میزان هیستاکریت، با نتایج مثبت بوده که هیچ‌یک کلیش اقدام فقط از خون کامل استفاده می‌شود که در کاردیو اندماه‌گری دارای محدودیت‌هایی ناشده است. برای بدین اینکه به این اختلاف میان غلظت هیستاکریت در نمونه خون کامل و سرم موجود است یا خیره، از 10 داواتل مقدار مثلاً (20-60 سال) دو نوع نمونه خون کامل و سرم (طبیعی روش دکتر شهد) کرده شده و میانگین آماده‌سازی قرانت گردنیدن یک کار سه بار نکار و میانگین نتایج در نظر گرفته شد.

5- بررسی تأثیر سطح شدید ریگ با گرد بر میزان هیستاکریت: از 8 داواتل مقدار مثلاً (20-60 سال) دو نوع نمونه یا و بدون استفاده از رگ بند تهیه و آماده قرانت گردنید تا اختلاف موجود میان این دو روش نمونه کریت مشخص گردید.

6- بررسی نتایج دو زمان بر میزان هیستاکریت: جهت بافت شرایط بند در میان سازی نمونه از 8 داواتل مقدار مثلاً (20-60 سال) نمونه‌های دو روز به صورت دست نخورده برای گردنیدن به صورت دست نخورده برای گردنیدن در مرحله دوم از 10 داواتل مقدار مثلاً (20-60 سال) نمونه‌های سرمی به صورت دست نخورده برای گردنیدن در مرحله دوم از 10 داواتل مقدار مثلاً (20-60 سال) نمونه‌های سرمی به صورت دست نخورده برای گردنیدن در مرحله دوم از 10 داواتل مقدار مثلاً (20-60 سال)
شکل 1. محتوی کالیبراسیون استانداردهای سرم هسته‌ای (ng/ml) به روش اصلی (O) و اصلاح شده (Improved=I) دلالت‌برندی (Flu. Res.: Fluorimetric Response، Con.: concentration).

شکل 2. توافق (agreement) در روش اصلی (Original = O) و اصلاح شده (Improved = I) با استفاده از روش آلفای الکس - پلاک. متوسط انحراف معیار است. Mean ± 2SD (0.38)

مقدار دلالت به عنوان متعارف مستقل و میزان پانئیستی به عنوان منتقد وابسته به جدول زیر می‌باشد:

Improved method: $y = 0.04453x + 0.05310$
دکتر زورآر پور پاکی

شکل ۳ توافق (agreement) در نوع نمونه کردن با و بدون استفاده از روش آزمایش معیار است.

شکل ۴ توافق (agreement) در نوع نمونه کردن با و بدون استفاده از روش آزمایش معیار است.

ابن دو معادله نرمال به یکدیگر و نمودار ۱ ابن نرمال وا نشان می‌دهد.

ابن دو معادله نرمال به یکدیگر و نمودار ۱ ابن نرمال وا نشان می‌دهد.

Original method: $y = 0.04845x - 0.02112$
جدول ۱: تغییرات درون روز فلوئوریتری برای اندازه‌گیری هیستامین

<table>
<thead>
<tr>
<th>دهمه (ng/ml)</th>
<th>بیشترین آماری</th>
<th>اندازه‌گیری هیستامین</th>
<th>ظرفیت تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>125/81±0.85</td>
<td>101/0.92</td>
<td>5/0.91±0.88</td>
<td>20/0.87±0.85</td>
</tr>
<tr>
<td>7/83</td>
<td>1/89</td>
<td>0.5/0.98</td>
<td>0.3/0.98</td>
</tr>
<tr>
<td>6/0.95</td>
<td>2/0.99</td>
<td>1/0.99</td>
<td>3/0.99</td>
</tr>
</tbody>
</table>

جدول ۲: تغییرات بین روز فلوئوریتری برای اندازه‌گیری هیستامین

<table>
<thead>
<tr>
<th>دهمه (ng/ml)</th>
<th>بیشترین آماری</th>
<th>اندازه‌گیری هیستامین</th>
<th>ظرفیت تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>152/84±0.88</td>
<td>102/0.86</td>
<td>5/0.91±0.88</td>
<td>20/0.87±0.85</td>
</tr>
<tr>
<td>7/83</td>
<td>1/89</td>
<td>0.5/0.98</td>
<td>0.3/0.98</td>
</tr>
<tr>
<td>6/0.95</td>
<td>2/0.99</td>
<td>1/0.99</td>
<td>3/0.99</td>
</tr>
</tbody>
</table>

در این تحقیق نشان می‌دهد که فلوئوریتری برای اندازه‌گیری هیستامین محدود به خون کامل نیازه و می‌توان از نمونه‌های سرمی هم استفاده نمود.

در جدول ۲ نشان داده‌شده درصد بازیافت بالایی ۹۰ درصد و درصدی فلوئوریتری برای اندازه‌گیری هیستامین محدود به خون کامل نیازه و می‌توان از نمونه‌های سرمی هم استفاده نمود.

در شکل ۳ نتایج حاصل از مقایسه دو نوع نمونه خون کامل و سرم را نشان می‌دهد. برای تعیین توافق میان این دو نوع نمونه به روش ایستاده گردید که با توجه به شکل تمام نقاط اختلاف‌ها در فاصله Mean ±2SD یافته شد.
جدول 2: محاسبه درصد بازیابی هیستامین در تغییر دروس فلوئورومتری

<table>
<thead>
<tr>
<th>شاخص آماری</th>
<th>Mean Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>اخراج معکور</td>
<td>9/75</td>
</tr>
<tr>
<td>ضریب تغییرات</td>
<td>0/575</td>
</tr>
<tr>
<td>تعداد</td>
<td>3</td>
</tr>
</tbody>
</table>

ساده، سریع و کم هزینه، تجربه به بهره سازی آن گرفته شد. برای اصلاح آینه بر روی حجم نمونه آزمایش مورد بررسی و به‌منظور اندازه‌گیری نهایی کارایی و دقیاقی اندازه‌گیری و تحلیل احتمال‌های نهایی که حجم نمونه کاهش نابینایی در میزان هیستامینان آن تخمین داشت (شکل 1). برای این با استفاده از روی اصلاح اشکال این این اندازه‌گیری هیستامین با نمونه ای با حجم کمتری به شکل ساده و قابل انجام و در غیر حال سرعت و کم هزینه تر فراهم می‌شود.

از انجا که غیر از این که در این درسی کالی این روش در اندازه‌گیری هیستامین وجود داشت (2006)، روش مذکور از نظر کمترین میزان قابل اندازه‌گیری، دقت و درستی مورد پرس قرار گرفت. کمترین میزان قابل اندازه‌گیری با روش فلوئورومتری در حد 1 نگ/میلی لیتر است. بنابراین هر همان دقت آن‌ها، این روی از دقت و تکرار پذیری بالای برخورد دارست (جدول 1a) و متوسط درصد بازیافت به‌طور محاسباتی (90%) است (جدول 2) که بین گروه درستی بلایی این روی می‌باشد.

از آنجا که روش اصلی فلوئورومتری فقط جهت نمونه خون کامل شرح داده شده است (2016)، مفایه ای به میان در نوع نمونه خون کامل و سریع انجام شد. بر طبق نتایج بدست امده (شکل 3) توانایی دادن نمونه مراحل تبادل، شد و محدودیت روی به خون کامل حذف گردید.

بحث

نکاته‌های گسترده‌ای در جهت اندازه‌گیری میزان حساسیت و اختصاصی شدن روش‌های اندازه‌گیری هیستامین انجام شده است (111). روش فلوئورومتری بکی از روش‌های استاندارد اندازه‌گیری هیستامین باعث می‌گردد و توانایی کاربرد در ارزیابی‌های مورد استفاده در ریخت‌شناسی حساسیت و احتمال حذف گردید.
همچنین برای یافتن روندی استاندارد جهت آدامسازی نمونه گرفته شده تا سه روز و زمان بر میزان هیستامین بررسی گردد. بر طبق نتایج بدست آمده (شکل 5)، نگهداری نمونه ها در یخ در حال در دوب طن آدامسازی و تزریق آنها حداقل در طی یک ساعت بطور معنی داران \(0.05>P<0.001\) از کاهش میزان هیستامین سرم جلوگیری می کند.

شکل 5- تاثیر دما و زمان بر میزان هیستامین سرمی
سنتر نمایشگر نمونه ای که در بالا به آمده خریداری گردید.
نمونه هایی که در دوب و استاندارد میکروونی نمونه‌هایی در دوب خارج شده و در دمای اتاق را نشان می دهد.

\[\text{Paired t-test} \quad * P<0.001 \quad ** P<0.0001\]

از دیگر فواید قابل ذکر این روش عدم نیاز به استفاده از مواد نشانده و مواد نمایشگر و بهبود کارایی آزموده است. بنابراین جمع بندی می‌تواند ذکر کرد که بر اساس این مطالعه این روش بهترین شهاده از نظر بیماری که بررسی می‌شود است. نمودار تغییر هیستامین سرم را به دلیل استفاده از مواد نشانده اند آغاز گردید که بهبود یابی این روش را برای بررسی از تحقیقات که به دلایل محدودیت‌های آندازه کری هیستامین، متوقف می شود.

نمونه‌های بعد از نمونه گیری

\[\text{Paired t-test} \quad * P<0.001 \quad ** P<0.0001\]

نتایج نشان داده که میانگین‌های هیستامین نمونه سرمی در زمان ده روز و دو روز میزان هیستامین نمونه‌هایی در یخ در دوب و در زمان ده روز میزان هیستامین نمونه‌هایی در یخ در دوب کاهش غلظت آن در طی نگهداری یافته تا سه روز پس از گردید (شکل 6).

بنا بر نتایج که عمل آزمایشی تحقیب کردن هیستامین سرمی کاهش غلظت آن در طی نگهداری باشد، نتایج در دو روز و در دو روز میزان هیستامین نمونه‌هایی در طی نگهداری است و محدودیت‌های بررسی به نمونه‌ها در زمان نمونه‌گیری به اغلب به ندرت قابل انجم است و برخورف می‌کند.
منابع

