مقايسه اثر دوکوزاهاگزانوینیک اسید و ایکوزاپتاینوینیک اسید روغن ماهی

بر تکثیر رده سلولی سرطان کولوکتال: گزارش کوتاه

چکیده

زیمتی همدان: در مراحل پیشبرده سرطان کولوکتال اغلب به درمان‌های کلاسیکی مفایه است. بنابراین جستجو جهت ارائه روش‌های درمانی جدید با حداکثر عوارض در مدیریت سرطان کولوکتال مورد توجه است. در این زمینه، تأثیر ماهی‌هند در درمان سرطان رهیابی گوشتی و دوکوزاهاگزانوینیک است. مطالعه حاضر، اثر ضدسرطانی ایکوزاپتاینوینیک اسید (EPA) و دوکوزاهاگزانوینیک (DHA) به عنوان اسیدهای چرب غیر اشباع در سلول‌های سرطانی کولوکتال بررسی گردید. روش بررسی سلول‌های سرطانی در میکروکست 1640 عوام به PMI و حاوی EPA و DHA بود. سلول‌های سرطانی در فاز‌های 0.1 و 150 میکرومول EPA و DHA به ترتیب 10 و 24 ساعت تیمار شدند. پس از 24 ساعت تیمار سلول‌های واکنشی با دوزی به کار رفته در زمان‌های 1/5% و 30% روشن شدند. دوکوزاهاگزانوینیک اسید دیگر از این دو اسید به‌عنوان اسید ترکیبی از DHA و EPA و DHA و MMA به دوره 6 و 100 میکرومول پژوهشکرد. میزان رشد سلولی با 24 ساعت تیمار سلول‌های 1/5% و 30% در مقایسه با سلول‌های کنترل تیمار شده 40/8% و 5/5% بود. این مطالعه نشان می‌دهد که اسیدهای چرب امگا-3 تکثیر سلول را کاهش می‌دهند و می‌توانند کلکت‌کننده سرطان کولوکتال، اسیدهای چرب، ایکوزاپتاینوینیک اسید (EPA) و دوکوزاهاگزانوینیک (DHA) را به‌عنوان سرطان‌کننده در درمان‌های بی‌ارضی مطرح کنند.

مقدمه

سرطان کولوکتال از سرطان‌های شایع در ایران می‌باشد. اساس این سرطان بر پدیداری کامل تومور همسار با پرتوکروماتوپینی و بی‌سیم‌درمانی می‌باشد. در مراحل پیشبرده سرطان کولوکتال اغلب مقاوم به درمان‌های کلاسیک می‌باشد. در نتیجه بیان روش‌های
اثر دوکولوزاگراینیویک و ایکوزاتیلینویک اسید. روش بافت هر گروه سلول سرطانی کولرنتال

آنها عادا ایجاد می کنند. مطالعات متعددی نشان دادند که Ecosapentaenoic Acid (EPA) و Docosahexaenoic Acid (DHA) در شرایط آزمایشگاهی رشد سلول‌های سرطانی را مهار کرد و منجر به ایجاد آنگیوژنیکی و افزایش جریان خون به آنها می‌گردید. این امر به دلیل این است که این دو اسید مزدیسک که از خانواده غیرنیاز پلی ان فنیکس تا پلی ان اکسوس تا پلی ان ده‌دانه توموری را از بین می‌برند. چنین ایمنی و DHA و EPA در کاملاً مطالعه حاصل به مظاهر بررسی اثرات این دو اسید محاسبه شد. 

روش بررسی

این مطالعه تجزیهی و در آزمایشگاهی کشت سلول پژوهشکده زیست فاولاری دانشگاه ارومیه می‌سالاری ۹۱-۹۲ انجام گردید. 

دوکولوزاگراینیویک اسید، ایکوزاتیلینویک اسید و MTI و DMSO ثابت گردید. 

روش‌های آزمایشی: آزمایشگاه پژوهشکده زیست فاولاری دانشگاه ارومیه می‌سالاری ۹۱-۹۲ انجام گردید. 

یافته‌ها

از آنها عادا ایجاد می‌کنند. مطالعات متعددی نشان دادند که Ecosapentaenoic Acid (EPA) و Docosahexaenoic Acid (DHA) در شرایط آزمایشگاهی رشد سلول‌های سرطانی را مهار کرد و منجر به ایجاد آنگیوژنیکی و افزایش جریان خون به آنها می‌گردید. این امر به دلیل این است که این دو اسید مزدیسک که از خانواده غیرنیاز پلی ان فنیکس تا پلی ان اکسوس تا پلی ان ده‌دانه توموری را از بین می‌برند. چنین ایمنی و DHA و EPA در کاملاً مطالعه حاصل به مظاهر بررسی اثرات این دو اسید محاسبه شد.
پیروترمی می‌باشد که عوامل جانداری بیماری‌های سرطانی در اکثر موارد نسبت به شیمی‌دارمانی با پروتوهای بوتونیون مقوم می‌شود. به همین علت ترکیب است که درمان‌های مکمل دیگری جهت افزایش کارایی درمان با کارگاهی شود. این دیدگاه از طرف دو جامعه مطالعات زیادی به منظور بررسی اثرات اسیدهای چرب غیر اشاع در سرتان کلروپکتا انجام شده است. به این ویژه محققین نشان دادند که EPA و DHA اپی‌نتوز را در رد سلول‌های سرطان کلروپکتا-29 با واسطه پراکسیداز به‌منظور تدریجی دخالت اعمال می‌کند.10 تولید نشان داده شده که این اسیدهای چرب در مهار رشد آن‌ها اهمیت دارد.11

می‌توان گفت که این اسیدهای برای زمان‌های مختلف و منابع مختلف، نقش مهمی بازی کرده‌اند.12

نمودار 2: میزان رشد سلول‌های سرطان داده تیمار شده در مقایسه با کنترل در غلظت‌های ذکر شده EPA (b) در بازه‌های زمانی 24 و 72 ساعت پس از تیمار. نتایج مربوطی با‌بار آزادی و هر بار از چهار تیمار می‌باشد. بالاترین میزان معادلی در غلظت 150 میکرومولار EPA و DHA با زمان‌های متنوعی در EPA و DHA نمایش گردید. تیمار 200/100 میکرومولار کرد.

بحث

بنابراین پیشنهاد می‌شود که ترکیب اسیدهای چرب اپ‌گرید به‌نوعی طراحی گردد. درمان‌های اولیه به سرطان کلروپکتا مورد بررسی و مطالعه قرار گیرد.

سیاست‌گذاری: این تحقیق با حمایت از ویژه‌پیمان صندوق حمایت از پژوهشگران کودکی جمهوری و دانشگاه امور انجام شده است که به دنبال ویژه‌نیست‌دان مطالعه حساسی از منابع گرایی تکرر و قدردانی می‌نماید.

مجله پاتولوژی و علوم پزشکی دانشگاه علوم پزشکی تهران، اسفند 1392، دوره 21، شماره 31: 781-789
References


Comparative study on the effect of fish-oil derived docosahexaenoic and eicosapentaenoic acid on proliferation of colorectal cancer cell line: a brief report

Parinaz Ahangar M.Sc.,1,2 Mohammad Reza Sam Ph.D.,1,2,3* Vahid Nejati Ph.D.1
1- Department of Histology and Embryology, Faculty of Sciences, Urmia University, Urmia, Iran.
2- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
3- Royan Stem Cell Technology Company, West Azerbaijan Cord Blood Bank, Urmia, Iran.

Abstract

Received: 02 July 2013 Accepted: 19 Oct. 2013 Available online: 01 Feb. 2014

Background: In advanced stages, Colorectal cancer remains often refractory to classic therapies. In consequence, search for new therapeutic modalities with minimal toxicity is of particular interest in colon cancer management. In this regard, powerful growth-inhibitory effect has been shown for fish-oil derived Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) against cancer cells. In the present study, we evaluated the anti-cancer effect of EPA and DHA (n3-polyunsaturated fatty acids, n3-PUFAs) on the human colorectal cancer cell line (LS174T) on a dose-response and time-course basis.

Methods: LS174T cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum at 37 ºC in a humidified incubator. Cancer cells were treated to various concentrations of EPA and DHA (50, 100, 150 µM/L) and incubated for 24-72 hours. Following treatments, dose-response and time-course cytotoxicity using viability and MTT assays were performed.

Results: Viability analysis showed that 150 µM/L PUFAs decreased significantly the proliferation of treated cells, as compared to untreated cells. In this regard, cell viabilities were found to be %31±%5.1 and %30±%2.6 for DHA and EPA respectively. Moreover, treatment of cells with increasing concentrations of EPA and DHA significantly decreased growth rates in a dose-and time-dependent manner. Following 72 hours treatments with 150 µM/L PUFAs, growth rates were found to be %19±%5.5 and %20±%5 for DHA and EPA relative to untreated cells respectively.

Conclusion: The results of this study indicate that n3-PUFAs decrease cell proliferation and could provide new approaches in malignant tumor therapeutic strategies.

Keywords: colorectal neoplasm, docosahexaenoic acid, eicosapentaenoic acid, fatty acid.