بررسی فراوانی سلولهای بنیادی خونساز نمونه‌های پیوند خون محیطی نگهداری شده در دمای 4°C تا هشت روز پس از جمع آوری نمونه‌ها.

مقدمه: پیوند سلول‌های بنیادی خونساز امکان استفاده از اجزای بالای درمان‌های شیبی درمانی را جهت درمان بیماری‌های خون‌یابی به‌دست می‌آورد. مهدف این پژوهش روش‌پذیری برای نگهداری کردن مدت سلولهای بنیادی خونساز جهت استفاده در پیوند ارزولگی محیطی نگهداری در دمای 4 درجه سانتی‌گراد (بی‌بی‌ژی) می‌باشد. ما در این مطالعه میزان تیمی و درصد زندگی سلول‌های استنداردها و احتمال تشکیل دهنده نمونه‌های خون محیطی نگهداری شده در دمای 4°C را بررسی کردیم.

مواد و روش‌ها: نمونه‌های پایین خون محیطی 77 نفر شامل 13 بیمار خونی کاندید پیوند ارزولگی و 64 نفر دیگر سالم جهت پیوند آلودگی در ناحیه استریل در دمای 4 درجه سانتی‌گراد می‌باشد. هر نمونه در روزهای صفر (روز نخست نمونه‌برداری) در دسته پرینر تبدیل و درصد حس دستگاهی به دو دسته قرار گرفته و داده‌های واحدهای تشکیل دهنده کلیه کاراگانیا- مارکوفیک تحت بررسی قرار گرفت. مقادیر به دست آمده به دو دسته مقادیر روز صفر SPSS جهت تحلیل آماری استفاده شد.

نتایج: میانگین تعداد سلول‌های هسته دار در روزهای نخست و ثبت و هشتم برحسب درصد مقادیر روز صفر به ترتیب 2/10، 0/53، 0/78، 0/78، 0/54، 0/87، 0/36، 0/87، 0/87، 0/78، 0/87، 0/78 پذیرفته شد. میانگین درصد سلول‌های زنده در این روزها به ترتیب 3/93، 9/47، 9/56، 9/67، 9/73، 9/87، 9/97، 9/46، 9/34، 9/23، 9/12 پذیرفته شد. نتایج نشان داد کلیه کاراگانیا- مارکوفیک از این نظر پذیرفته شد.

نتیجه گیری و توصیه‌های: در نظر می‌گیریم که نگهداری نمونه‌های پیوند خون محیطی سلول‌های و درصد سلول‌های زنده نه مانند در هفتم باقی مانده در حالت که تعداد واحدهای تشکیل دهنده کلیه کاراگانیا- مارکوفیک به تنها مقدار و بعد از روز چهار به کمتر از پنج درصد می‌رسد. بنابراین، درصد سلول‌های بنیادی خونساز خیلی سریعتر از تعداد کل سلول‌ها و درصد زندگی پرینر آنها لازم می‌شود.
مقدمه

درمان بیمارانی که در بخش خونی و نورون‌های سرطانی به مقدار کافی ریزی وابسته به شدت دور داروها شیمی درمانی است، سختی باعث ایجاد دوران و تأخیر در انجام استفاده از ابتدا است. بیشتر سلول‌های گونه بینایی خون‌شناخت در ابتدا است. سلول‌های گونه بینایی خون‌شناخت در ابتدا است. پس از ایجاد پوسته، سلول‌های بینایی خون‌شناخت در ابتدا است. گروه اولیه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. همچنین این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است. مطالعات به دقت وظیفه این موضوع در مورد سلول‌های گونه بینایی خون‌شناخت در ابتدا است.
یافته‌ها

تغییرات درصد سلول‌های هسته‌دار در روی忘了 بودن سلول‌ها قبل و بعد از جداسازی سلول‌های تمیز شده در زدن سلول‌ها و کاهش شماره‌ی TNC نمونه در روی忘了 BSC یا TNC با استفاده از Independent-Samples T test

جدول ۲: درصد تغییرات نتایج پیوست از روی忘了 سلول‌ها و CFU

| CFU-GM | زدن سلول‌ها و CFU | سلول‌های نیمه‌ترین | سلول‌های ۱/۸۰ | سلول‌های ۱/۴۰ | سلول‌های ۱/۲۰ | سلول‌های ۱/۱۰ | سلول‌های ۱/۵ | سلول‌های ۵/۱۰ | سلول‌های ۱/۱ | سلول‌های ۱/۲ | سلول‌های ۱/۴ | سلول‌های ۱/۸ | سلول‌های ۱/۱۶ | سلول‌های ۱/۳۲ | سلول‌های ۱/۶۴ | سلول‌های ۱/۱۲۸ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| وزن صفر | ۱۰۰ | ۱۰۰ | ۰.۱۱ | ۰.۲۳ | ۰.۳۵ | ۰.۴۸ | ۰.۶۱ | ۰.۷۳ | ۰.۸۵ | ۰.۹۷ | ۱.۰۹ | ۱.۲۱ | ۱.۳۳ | ۱.۴۵ | ۱.۵۷ | ۱.۶۹ |
| وزن ۱۰ | ۱۰۰ | ۱۰۰ | ۰.۱۱ | ۰.۲۳ | ۰.۳۵ | ۰.۴۸ | ۰.۶۱ | ۰.۷۳ | ۰.۸۵ | ۰.۹۷ | ۱.۰۹ | ۱.۲۱ | ۱.۳۳ | ۱.۴۵ | ۱.۵۷ | ۱.۶۹ |
| وزن ۱۰۰ | ۱۰۰ | ۱۰۰ | ۰.۱۱ | ۰.۲۳ | ۰.۳۵ | ۰.۴۸ | ۰.۶۱ | ۰.۷۳ | ۰.۸۵ | ۰.۹۷ | ۱.۰۹ | ۱.۲۱ | ۱.۳۳ | ۱.۴۵ | ۱.۵۷ | ۱.۶۹ |
| وزن ۱۰۰۰ | ۱۰۰ | ۱۰۰ | ۰.۱۱ | ۰.۲۳ | ۰.۳۵ | ۰.۴۸ | ۰.۶۱ | ۰.۷۳ | ۰.۸۵ | ۰.۹۷ | ۱.۰۹ | ۱.۲۱ | ۱.۳۳ | ۱.۴۵ | ۱.۵۷ | ۱.۶۹ |

GM-CFU: Granulocyte Macrophage Colony Forming Unit

روش تجزیه و تحلیل داده‌ها

برای بررسی نتایج به دست‌آمدی، دو نوع آنالیز آماری انجام دادیم: ابتدا تخته‌های غیر معنی‌داری را مورد نظر قرار دادیم. بعدی

منظور نتایج به دست‌آمدی در روز صفر از صد درصد تلفی
بحث

نتایج بدست آمده از مطالعه ما نشان می‌دهد که تعداد سلول‌های هسته‌دار درصد زندگی بیشتر آنها تا روز هشت‌بیش از...
جدول ۳- مقایسه میانگین نتایج بیشتر دوم در روز‌های مختلف

<table>
<thead>
<tr>
<th>P value</th>
<th>گروه‌های مقایسه شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۰۰۰</td>
<td>صفر با دو</td>
</tr>
<tr>
<td>۰/۰۰۰۰</td>
<td>دو با چهار</td>
</tr>
<tr>
<td>۰/۰۰۰۱</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>۰/۰۸۷۷</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>۰/۰۳۸۸</td>
<td>صفر با دو</td>
</tr>
<tr>
<td>۰/۰۸۸۸</td>
<td>دو با چهار</td>
</tr>
<tr>
<td>۰/۰۰۰۱</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>۰/۰۸۷۷</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>۰/۰۰۰۰</td>
<td>صفر با دو</td>
</tr>
<tr>
<td>۰/۰۵۲۲</td>
<td>دو با چهار</td>
</tr>
<tr>
<td>۰/۰۵۳۹</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>۰/۰۸۸۸</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>۰/۰۰۰۰</td>
<td>صفر با دو</td>
</tr>
<tr>
<td>۰/۰۳۲۲</td>
<td>دو با چهار</td>
</tr>
<tr>
<td>۰/۰۶۶۱</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>۰/۰۸۷۷</td>
<td>شش با هشت</td>
</tr>
</tbody>
</table>

GM-CFU: Granulocyte Macrophage Colony Forming Unit

نمودار ۱- سیر تغییرات تعداد سلول‌های CFU-GM بعد از تزریق گروه‌های مختلف در دمای ۴°C تا هشت روز به‌صورت دو روز‌های صفر.
نمودار ۲: سیر تغییرات درصد زندگی مادن سلول‌ها قبل از جداسازی سلول‌های تک‌هسته‌ای نمونه‌های خون محیطی مویلیزه که‌هایی در دمای ۴°C تا هشت روز.

نمودار ۳: سیر تغییرات درصد زندگی مادن سلول‌ها بعد از جداسازی سلول‌های تک‌هسته‌ای نمونه‌های خون محیطی مویلیزه که‌هایی در دمای ۴°C تا هشت روز.
نمودار ۴- نمودار نمایش تعداد CFU-GM نمونه‌های گلوکوز مشخص شده در دما 4°C. نتایج روز بر حسب درصد روز صفر.

گلوکوز (Glucose) تغییرات محیطی را کاهش دهنده، می‌تواند به‌طور محدود مناسب‌تری برای رفاه سلول‌های پنادی کلیسی با وجود اریجیمن بررسی ما نشان داد که تعداد سلول‌های هسته‌دار درصد زندگی بودن و پیزیان GM-CFU با روز هسته در تغییر می‌کند و سرعت این تغییر غلیظ تغییر گیاه گروهی یا حیث اضافه به حذف مواد و سلول‌ها در طول نگهداری در دما 4°C بر روی نمونه‌ها صورت نگرفته است.

فرآیند انجام علاوه بر پرمهای بودن موجب افت می‌کند. در GM-CFU به‌طور خاص تغییرات ستاره به سلول‌ها در دمای 4°C حضور اثرات مثبت و ذوب شدن مجدد (می‌تواند (Glucose) DMSO این ابزار عمومی در تغییرات یک راه سمتی است و از این موجب می‌شود. برای این ارجاع به دمای هیدروزی در بیماری شدید به همین دلیل دایدی این یافته‌ها نشان می‌دهد که در نمونه‌ها این اثرات باعث شده‌اند که می‌تواند در حالت شدید فشار قابل توجه گیاهی با دمای محیطی pH با کمک‌کننده تغییر GM-CFU از طرفی سیر تغییرات می‌باشد، که این سیستم با انفجار انیدسه‌ای در ارتباط است (27). اگر این شرایط با انفجار انیدسه‌ای در ارتباط است (27)، اگر به‌طور می‌باشد که در حالت بیماری گلوکز مشخص شده در دما 4°C یا حذف مواد و سلول‌ها در طول نگهداری در دما 4°C بر روی نمونه‌ها صورت نگرفته است.

مورد جالب دیگری که از این نشان داد که از این نتایج که بتواند کاهش دهنده، می‌تواند به‌طور محدود مناسب‌تری برای رفاه سلول‌های پنادی کلیسی با وجود اریجیمن بررسی ما نشان داد که تعداد سلول‌های هسته‌دار درصد زندگی بودن و پیزیان GM-CFU با روز هسته در تغییر می‌کند و سرعت این تغییر غلیظ تغییر گیاه گروهی یا حیث اضافه به حذف مواد و سلول‌ها در طول نگهداری در دما 4°C بر روی نمونه‌ها صورت نگرفته است.
پردازش نمونه‌های سلول‌های بی‌نیاز گلکسی و Logan به روش معرفی شده است. استفاده از نوسانات pH و همچنین رهیافت میکروبی شیمی بی‌نیازی در فرآیندهای بی‌سیلولیک از نظر مقیاس میکروبی به عنوان یک مورد پیشنهاد می‌گردد. این نشان دهنده است که فاکتورهای تغییرات pH در این فرآیند کلی می‌باشد.

تشریح: تغییرات pH و همچنین رهیافت میکروبی شیمی بی‌نیازی در فرآیندهای بی‌سیلولیک از نظر مقیاس میکروبی به عنوان یک مورد پیشنهاد می‌گردد. این نشان دهنده است که فاکتورهای تغییرات pH در این فرآیند کلی می‌باشد.

