بررسی فراوانی سلول‌های بینیادی خونساز نمونه‌های پیوند خون محیطی نگهداری شده در دمای 4 °C تا هشتم روز پس از جمع آوری نمونه‌ها.

چکیده

مقدمه: پیوند سلول‌های بینیادی خونساز امکان استفاده از درمان‌های بالایی دارویی شامل درمان برای بیماران بیماری خونی به‌دیگر فرآیندهای بهبود می‌دهد. روش برای نگهداری کرده بود سلول‌های بینیادی خونساز جهت استفاده در پیوند ارائه‌گذاری می‌شود. اگرچه سلامت و درصد زندگی سلول‌های در دمای 4 °C را بررسی کردیم.

مواد و روش‌ها: نمونه‌های پیوند خون محیطی 77 نفر شامل 13 بیمار خونی کاندید پیوند ارائه و 64 نفر همان سال سلامت پیوند آلوژن در پنجم لوله استریل در دمای 4 درجه سانتی‌گراد به مدت هشت روز نگهداری شدند. هر نمونه در 24 ساعت صفر (روز اخیر نمونه) در دمای 69 °C هنگام پرورش در باد، رشد و شکل‌گیری نهایی شاهد حذف سلول‌های بیام نمی‌گردد. درصد زندگی بیانگر رشد و تعداد راه‌حل‌های تشکیل دهنده کلیه کرناولوئسیت- مارکوف‌ناژ تحت بررسی قرار گرفت. مقادیر به دست آمده به درصد مفاهیم روز صفر SPSS جهت تحلیل آماری استفاده شد.

یافته‌ها: مولکول‌های تعداد سلول‌های هسته‌دار در روزهای دوم، سه و چهار نمی‌تواند در مقدار روز صفر به ترتیب 2100، 1987، 1882، 1974، 1377 بود. مولکول‌های تعداد سلول‌های زندگی در این روزها به ترتیب 984، 868، 817، 783 و 737 بود. مولکول‌های تعداد اینها تشکیل دهنده کلیه کرناولوئسیت- مارکوف‌ناژ به همین ترتیب 827/94، 837/48، 827/43، 817/64 و 177/10 بود. همچنین در مسیر مشترک رشد و نرخ مدنیان، اپتوم یا آلوژن با شمارش سلولی، درصد زندگی بیانگر تعداد و تعداد راه‌حل‌های تشکیل دهنده کلیه کرناولوئسیت- مارکوف‌ناژ بود.

نتیجه‌گیری و توصیه‌ها: در پژوهش رود وزن در نمونه‌های پیوند خون محیطی تعداد سلول‌ها و درصد سلول‌های زندگی نشان داد که تعداد این‌ها تشکیل دهنده کلیه کرناولوئسیت- مارکوف‌ناژ در روزهای اول نسبی به تعداد سلول‌های دیگر بیشتر است. این نتیجه می‌تواند به بهبود درصد زندگی بیانگر سلول‌های پیوند خون محیطی کمک کند و بعد از روز اول به کمتر از پیوند می‌رسد. بنابراین، تعداد سلول‌های پیوند خون محیطی بررسی می‌شود.
مقدمه
درمان بیمارانی که ببخش حسی و تومورهای سرطانی به مقدار زیادی داروها و تخییر مغز استخوان توسط می‌کنند، از دوینه‌های این داروها را به‌طور اجباری کاهش می‌دهند. بخشی از این داروها، مثلاً دوینه‌های توده‌سازی، از بیماران کمی می‌کنند. بنابراین نیاز به جایگزینی سلول‌های استخوان دارد.

مواد و روش‌ها
از تعداد 37 دهه‌نامه که ویژگی‌های پیشرفته در جدول 1 نشان داده شده است، بهترین انتخاب کردن یک پیشگیری G-CSF (اپریزی از پیام‌ها که با پیام‌های پیام‌های مربوط به سی اس‌اف، سی‌ال‌سی‌های و درمان درمانگی کرده) ممکن است سلول‌های استخوان با استفاده از دستگاه‌های بازی دیسک (Cobe) واگر به کمک دیجیتالهایی در سیستم‌های استخوان در شرایط مختلف پیام‌دهند.

مطالعات زیانی روز جهانی گروه‌های استخوان در سال 1980 در هم که در جزء سال گردیده و در آن آن نظر روز جهانی استخوان به طور وسیع در درمان بیماران خون‌غیرت با نتایج‌های استخوان می‌شود. انجام گرفت (2.4). نتایج این مطالعات نشان‌دهنده بود که از بیماران مبتلا به سینوسی‌های توموزی و بیمارانی این تومور میرنگ می‌باشد.

بررسی پروتئین‌های مغز استخوان در سال 1980، در درمان بیماران خون‌غیرت با استفاده از سیر تغییرات سلول‌های استخوان میرنگ استخوان نگه‌داری شده در دهه‌های 1969 – 70 درجه سانتی‌گراد را ایجاد کرد. در بررسی‌های انجام شده، نشان داده شد که در درمان‌های مغز استخوان میرنگ استخوان و دوبی‌سلول‌های مغز استخوان میرنگ استخوان سینوس مغزی (CFU) در سال‌های 2007-2008 کمتر داشته و بر اساس انجام نشانه‌های میرنگ استخوان میرنگ استخوان میرنگ استخوان (DMSO) می‌باشد.

در جدول 1، متابولیت‌های دیگر، نشان داده که میرنگ استخوان تا 5 روز در زمان جهانی به دو درجه سانتی‌گراد سی‌ال‌سی‌های میرنگ استخوان را افزایش می‌دهد. این نتایج شامل استخوان‌های مغزی و به ترتیب میرنگ استخوان (Peripheral Blood Stem Cell) می‌باشد.

مطالعات مشابه نسبت به سلول‌های میرنگ استخوان در میرنگ استخوان میرنگ استخوان انجام گیرد. استفاده می‌تواند در این مطالعات سی‌ال‌سی‌های استخوان در میرنگ استخوان میرنگ استخوان به سلول‌های GM-CFU و سلول‌های میرنگ استخوان میرنگ استخوان کمتر داشته و بر اساس انجام نشانه‌های میرنگ استخوان میرنگ استخوان (DMSO) می‌باشد.
یافته‌ها

تغییرات درصد سلول‌های هسته‌دار، زنده بودن سلول‌ها قبل و بعد از جداسازی سلول‌های نک هسته‌دار بیماران در روژهای CFU و شمارش شکل‌های CFU نمایش داده شده است.

جدول ۲: درصد نتایج تطبیق بیماران در روژهای CFU هسته‌دار

<table>
<thead>
<tr>
<th>CFU/GM</th>
<th>سلول‌های زنده بودن سلول‌های نک هسته‌دار</th>
<th>سلول‌های زنده بودن سلول‌های نک هسته‌دار در جداسازی‌های حساسیت</th>
<th>روژهای CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>75,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>70,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>65,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>60,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>55,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>50,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>45,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>40,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>35,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>30,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>25,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>20,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>15,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0,50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

CFU: Colony Forming Unit

GM-CFU: Granulocyte Macrophage Colony Forming Unit

GM-CFU به عنوان یکی از ابزارهایی که در تربیت و تحلیل داده‌ها به کار می‌رود، به عنوان یکی از ابزارهایی که در تربیت و تحلیل داده‌ها به کار می‌رود، به عنوان یکی از ابزارهایی که در تربیت و تحلیل داده‌ها به کار می‌رود.
بحث

نتایج دسته آماده از مطالعه ما نشان می‌دهد که تعداد سلولهای مستند در دو زندگی بودن آنها و روز هشت باشیز
جدول 3- مقایسه میانگین نتایج بدست آمده در هر دو روز متوالی

<table>
<thead>
<tr>
<th>P value</th>
<th>گروه‌های مقایسه‌شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>صفر با دو</td>
</tr>
<tr>
<td></td>
<td>دو با چهار</td>
</tr>
<tr>
<td>0.001</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>0.877</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>0.038</td>
<td>صفر با دو</td>
</tr>
<tr>
<td></td>
<td>دو با چهار</td>
</tr>
<tr>
<td>0.042</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>0.788</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>0.000</td>
<td>صفر با دو</td>
</tr>
<tr>
<td></td>
<td>دو با چهار</td>
</tr>
<tr>
<td>0.005</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>0.033</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>0.000</td>
<td>صفر با دو</td>
</tr>
<tr>
<td></td>
<td>دو با چهار</td>
</tr>
<tr>
<td>0.044</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>0.866</td>
<td>شش با هشت</td>
</tr>
<tr>
<td>0.000</td>
<td>صفر با دو</td>
</tr>
<tr>
<td></td>
<td>دو با چهار</td>
</tr>
<tr>
<td>0.032</td>
<td>چهار با شش</td>
</tr>
<tr>
<td>0.177</td>
<td>شش با هشت</td>
</tr>
</tbody>
</table>

GM-CFU: Granulocyte Macrophage- Colony Forming Unit

نمودار ۳- سیر تغییرات تعداد سلول‌های هسته‌دار نمونه‌های خون مربوط به مقایسه‌شده در دما ۴°C به‌طور کل بر حسب روز و روز صفر
نمودار ۲- سیر تغییرات درصد زندگی ماده سلول‌ها بعد از جداسازی سلول‌های تک هسته‌ای نمونه‌های خون محیطی موبیلیزه‌کننده‌ها در دمای ۴۸ درجه سانتی‌گراد در ۸ روز

نمودار ۳- سیر تغییرات درصد زندگی ماده سلول‌ها بعد از جداسازی سلول‌های تک هسته‌ای نمونه‌های خون محیطی موبیلیزه‌کننده‌ها در دمای ۴۸ درجه سانتی‌گراد در ۸ روز
نمودار ۲: تغییرات تعداد CFU-GM نمونه‌های خون ملایمی سایبان گره‌هایی شده در دمای ۴°C تا نهایت روز بر حسب درصد روز صفر

مورد جالب دیگری که از شاهد پیوند موفق یک نمونه مجزای استخوان است که پس از ۹ روز تغبیری در دمای ۴°C، در حال غرسه است (۱۲). اگر چه این نتایج منحنی را می‌توان با خودشان به اختلال مواد و روش‌های مورد استفاده مرتب دانست، نتایج درونی را نشان نمی‌دهد. گرفت. شاید عوامل ای که هنوز مورد توجه قرار نگرفته‌اند در تمیزی سیر تغییرات GM-CFU و دیگر راه‌های سپری‌سازی نمودار داده‌اند.

کانوکسین (۱۱) تغییرات محیطی را کاهش دهیم. می‌توانم محیط مناسبی برای حفظ سلول‌های بندی داشته باشند. درصد زندگی بندی و سیریتی ادیت GM-CFU به تدریج افزایش می‌یابد و در روز هشت فقط ۱۰٪ از سلول‌های نمونه مادره در این مطالعه همیشه دستکاری‌ها (از قبیل اضافه یا حذف مواد و سلول‌های دیگر) در طول تغبیری در دمای ۴°C بر روی نمونه‌ها صورت نگرفته است.

فرآیند انجام علاوه بر بهره‌گیری بودن موجب افت GM-CFU بهبود تضخیل استرس به سلول‌ها طی انجام و ذوب شدن مجدد در نیود (۱۱)، علاوه بر این گرفت. (Di Methyl Sulfoxide) DMSO این استفاده در انجام بک ماس بسیار است و می‌تواند موجب برنز عوارض در بیمار شود. به همین دلیل باید با استفاده نمونه‌ها تا حد امکان این فرآیند به‌زمان بر روی انسان و هر یک از مسایلی که نیازمند است، وی هم‌مرنی انجامد که امکان نگهداری بلند مدت (تا چند سال) در محل می‌باشد و با تابیت GM-CFU و همکارانش گزارش

شاهره، پیوند موفق یک نمونه مجزای استخوان است که پس از ۹ روز تغبیری در دمای ۴°C، در حال غرسه است (۱۲). اگر چه این نتایج منحنی را می‌توان با خودشان به اختلال مواد و روش‌های مورد استفاده مرتب دانست، نتایج درونی را نشان نمی‌دهد. گرفت. شاید عوامل ای که هنوز مورد توجه قرار نگرفته‌اند در تمیزی سیر تغییرات GM-CFU و دیگر راه‌های سپری‌سازی نمودار داده‌اند.

از انجام که کاهش تعداد سلول‌های مسئو دار در طول تغبیری در دمای ۴°C عمده‌تر با خاطر از بین رفتن سلول‌های میلیسیدی بالا است (۱۲). اگر این سلول‌ها را بیش از تغبیری در دمای ۴°C از نمونه‌های خون می‌گیرد، شاید بتوانیم با گرفتی از رها شدن محدودیت سلول‌های در حال مركب به داخل سوسپانسیون سلولی تغییری در انت سریع سلول‌های کانی را ایجاد کنیم.

pH از طرفی سیر تغییرات GM-CFU با چگونگی تغییر pH محیطی، افت گلرک و افزایش یکتات در ارتباط است (۱۲). اگر بتوانیم با حدف اضافه کردن مواد فارماکولوژیکی نظر مادر ضد امکان

ACD (که موجب افزایش گلرک می‌شود) و یا خود
علاوه بر این منظره، یک مورد بیرون موفق منجر استخوان پس از نه روز نگهداری در دمای 4°C گزارش شده، می‌توان تصور کرد که امکان نگهداری کردن مدت سالولهای در 4°C به مدت بیش از زمان استاندارد فعیل (۶۰ روز) که نسبت به انجام از هزینه کمتر و بهره‌برداری بهتری در نظر گرفته می‌شود.

پس از نگهداری داریم، محیط سالولهای pH، گلکوز و لاکتات و همچنین رده‌های بنیادی تر سالولهای بنیادی را به روش‌های ارزیابی مورد استفاده، اضافه کرده‌ایم.

 تشکر و قدردانی
با تشکر از خانم‌ها طلبه مردخدایی و دانشجویانی که خاطر PBSC مهارتی حساسیت در جمع نوین تپه‌ها بازی کرده‌اند.
منابع


