Magnetic Resonance Imaging (M.R.I.)

Abstract

Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I.), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and Spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R. images are mentioned.
که در آن B_0 میدان مغناطیسی خارجی و γ نسبت زیرو مغناطیسی (gyromagnetic ratio) می‌باشد. به حالت سه و فرآیند ایزوتروپی بستگی دارد. مقادیر γ برای پروتون (همه اتم هیدروژن) بیشترین است.

امپن (spin) یکی از نشانه‌های دنیای ماده است. برخی از ماده‌ها، مثل C_6، می‌توانند با استفاده از جریان چرخشی عمود بر اکسیداسیون به آن γ مقدار جریان داشته باشند.

دوران آنها میدان مغناطیسی (magnetic momentum) شامل γ می‌باشد که γ نشان میدهد و راستای میدان مغناطیسی در پریودی هسته را می‌نمایند. میدان این بخش به‌کار می‌رود تا مسجود نوشته‌ها را به‌کار گیرند. میدان را می‌توان با میله‌های آمپلودی می‌نماید.

(شکل 1) یک پوسته با دو نقطه می‌گیرد مغناطیسی نام‌دهند.

همه در یک میدان مغناطیسی

همگامی به‌هم‌کنش هسته‌ها در یک میدان ثابت مغناطیسی قرار می‌گیرند، دو نمونه (شکل 2) که به صورتی تصحیح می‌شوند. در نوار اول، نوار اول به آن واکنش نشان می‌دهند. در نوار دوم قرار گرفتن بصری نمایش و نام‌ناموزی وجود انرژی قرار گرفتن (باین) و در نوار ثالث، هم‌کشی دیده می‌شود. (شکل 2)

با استفاده از نکات اضافه، به‌هم‌کنی سه نکات در راستای میدان مغناطیسی قرار نمی‌گیرند، بلکه با آن زاویه θ را نسبت به B_0 میدان خارجی می‌دانند. از اینرو، دبیولیت به‌طور محسوس قرار گرفته در میدان مغناطیسی شروع به جریان دارد. در حوالی راستای میدان خارجی مانند γ در نوار در میدان قرار گیرند. در نوار اول، شدت میدان قرار گرفته شود، فرکانس قرار گیرند میدان از پریودی هسته را می‌نماید. این نوار در مورد هسته اتم هیدروژن با پریود میدان به‌کار می‌رود. شدت میدان مغناطیسی تغییر می‌کند. لازم به یادآوری است که فرکانس قرار گرفته محدود می‌شود.

(تارمور لارمور)

رابطه لارمور نشان می‌دهد که فرکانس ω مربوط به قرار گرفتن از میدان مغناطیسی B_0 می‌باشد.

$$\omega_0 = \gamma B_0$$
برآیند مغناطیسی شدن

(yet or macroscopic magnetization)

یک هستهٔ صورت تناهی هیبریدی، وجود ندارد و آزمایش‌های NMR بدون جمع ممانعتی مغناطیسی محسنت‌شده امکان پذیر نیست و (1:200). یک‌ها از هسته‌های که دارای عناصر مغناطیسی شده و قراری زیاد و در لنجه به‌دست دادن نگاره‌های NMR با انرژی در آب 100\(^{-1}\) (اندازه‌گیری الکترون در مولکول آب در حالی‌که باعث به‌کارگیری مانندی که جلوگیری از قراری تصادفی است جمع‌بندی این هسته‌ها می‌تواند باعث مانعی نباشد. این هسته‌ها در مدارهای مغناطیسی به‌صورت تصادفی است جمع‌بندی این هسته‌ها می‌تواند باعث M-مورد باشد. چنانچه یک مدار به دو مدار از جمله (processional orbit).

میدان امواج رادیوئی

برآیند جمع‌بندی در مغناطیسی شدن (M) در مولکول افکنی و عمودی است. مولکول افکنی با \(\text{B}_0\) و به‌کارگیری توانایی دیگر \(\text{B}_1\) باعث می‌شود مانندی که جلوگیری از قراری تصادفی است جمع‌بندی این هسته‌ها می‌تواند باعث M-مورد باشد. چنانچه یک مدار به دو مدار از جمله (processional orbit).

همودرسی فاز

با دو بار رفتار میدان امواج Rf، به‌کارگیری توانایی باعث مرتب شدن (M) در مدارهای مغناطیسی شدن (M) در مولکول افکنی و عمودی است. مولکول افکنی با \(\text{B}_0\) و به‌کارگیری توانایی دیگر \(\text{B}_1\) باعث می‌شود مانندی که جلوگیری از قراری تصادفی است جمع‌بندی این هسته‌ها می‌تواند باعث M-مورد باشد. چنانچه یک مدار به دو مدار از جمله (processional orbit).

روزونانس

نواحی مانندی در مجموع‌های مانندی که دارای نزدیک‌مترایه آبی (Ei) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش نزدیک‌مترایه آبی (Ei) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش

رژیم (AE) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش

(2) (AE) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش

(3) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش

(4) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش

(5) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش

(6) به سطح افزایش و در سطح افزایش مانندی هستند. روزونانس عبارت از افزایش
مورد نظر (spin density) (می‌باشد. اگر از دیدگاه الکترون–فیزیکی یک نواحی از
سیگنال را انقلات فوریه نماییم (Fourier transfer) روی دیگر است
که فوران‌های تشکیل‌دهنده بکه را متحرک از هم جدا
می‌شوند. مانند تجزیه نور سفید به منشور به
فوران‌های سبکتر نور الیافی (ماده سبز و آبی و گیره) تابع
کار ریسک‌سنجی (specrum) (RF و این فرکانس‌های داده‌های
نورال‌سنجی (NMR) (X و Y) بر حسب زمان و به سیگنال شدت بر حسب
نورال‌سنجی (NMR) (X و Y) بر حسب زمان و به سیگنال شدت بر حسب

شکل (7) ماده‌ها در زمان معادل میدان شدت الکترونی (مؤلفه انتی)-با بکارگیری میدان
RF که با آن زمان انجام سیگنال و هم زمان است و به فاز می‌آید.
زمان آسانش T_1

برای کاهش زمان به وسیله $T_2\pi$ و $\pi/2\pi$ می‌توانید در میانه‌هایی که پس از جذب ازنیزی به یک نقطه موجب می‌شود بررسی می‌کنید. در صورتی که مدت بررسی به‌دست آمده به‌کار برانگیزه می‌شود، می‌توانیم به‌طور کلی در نظر بگیریم که در تغییرات منفی T_1، این کار به وسیله دوران بردار برای برآمدگی مغناطیسی شدن از حالت عمومی منتهی شکل (10) برای می‌گردد. همچنین با استفاده از یک فیلتر و با بهره‌برداری از XY در نتیجه بردار براین به حالت عمومی بیشتر دوران می‌کند.

می‌توانید با استفاده از π به همراه T_1 به اینکه در جذب ازنیزی به یک نقطه می‌توانید به‌کار برانگیزه می‌شود. در صورتی که مدت بررسی به‌دست آمده به‌کار برانگیزه می‌شود، می‌توانیم به‌طور کلی در نظر بگیریم که در تغییرات منفی T_1، این کار به وسیله دوران بردار براین به حالت عمومی بیشتر دوران می‌کند.

شکل (a):

شکل (b):

شکل (c):

شکل (d):

شکل (e):

شکل (f):
زمان آسایش T2

طبقه‌بندی T2 زمان آسایش سیگنال است. این نوع آسایش در رزونانس مغناطیسی (NMR) و سیستم آسایشی مستقل (MRI) مورد استفاده قرار می‌گیرد. در این نوع آسایش، سیگنال MRI مربوط به ناحیه‌های مختلف بدن بر اساس خصوصیات فیزیکی و شیمیایی سلول‌ها ارائه می‌شود.

زمان آسایش T2 به عنوان یکی از متغیرهای اصلی در MRI به‌کار می‌رود.این متغیر به طور عمده بر اساس انرژی الکترونی بدن در وضعیت به‌هم نزدیک قرار گرفتن ترمیمی به خصوصیات فیزیکی و شیمیایی سلول‌ها ارائه می‌شود.

تکنیک‌های مختلفی در اطالعات بسته به شرایط مختلف و ابزار استفاده می‌شود.

1- تکنیک نقطه‌ای (point technique)
2- تکنیک خطی (line technique)
3- تکنیک صفحه‌ای (planar technique)
4- تکنیک سه‌بعدی (full three dimensional technique)

جدول 1: دانسیتی سیگنال (SD) و زمان‌های آسایش T1 و T2

<table>
<thead>
<tr>
<th>Tissue</th>
<th>SD</th>
<th>T1 (ms)</th>
<th>T2 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>100</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>79</td>
<td>720</td>
<td>55</td>
</tr>
<tr>
<td>Cardiac muscle</td>
<td>80</td>
<td>725</td>
<td>50</td>
</tr>
<tr>
<td>Liver</td>
<td>71</td>
<td>290</td>
<td>50</td>
</tr>
<tr>
<td>Fat</td>
<td>-</td>
<td>360</td>
<td>30</td>
</tr>
<tr>
<td>Bone</td>
<td>12</td>
<td><100</td>
<td><10</td>
</tr>
<tr>
<td>Spleen</td>
<td>79</td>
<td>570</td>
<td>50</td>
</tr>
<tr>
<td>Kidney</td>
<td>81</td>
<td>505</td>
<td>50</td>
</tr>
<tr>
<td>Gray matter</td>
<td>84</td>
<td>405</td>
<td>105</td>
</tr>
<tr>
<td>White matter</td>
<td>70</td>
<td>345</td>
<td>65</td>
</tr>
</tbody>
</table>

زمان‌های آسایش T1 و T2 برای برخی از نوع‌های مختلف سیگنال و سلول‌ها متفاوت است.

نتایج رزونانس مغناطیسی

در این پایان‌نامه، بررسی سیستم MRI بر تکنیک MRI در تعیین زمان آسایش T2 و T1 و به‌ویژه مطالعه تغییرات نحوه سیگنال در ناحیه‌های مختلف بدن ارائه می‌شود.
تصویر برداری با زنگ ریگی بدست آمده است (٩). زمان اینکار ١٢ دفیقه است. با تکنیک‌های گوناگون و با استفاده از میدان‌های کم و بالا بر روی سیستم مغناطیسی فواری و تعداد پیکسل زیر است و همچنین تغییر ناکامپرهای از
\(T_1 \) و
\(T_2 \) و زمان کلی نگاره‌گیری می‌توان بگذارد. علاوه بر

گفتی به‌صورت عالمی و آزمایش سازمانی از بدست آورده.

در شکل (١٤) نگاره

IMGR ۱۱۴ خ. × ۱۲۵۶

پیکسل برای مسایل میدرزن در میدانی به دست آمده است. این

و زمان کلی نگاره‌گیری

\(\frac{1}{6} \) دقیقه تایم‌شیپ داده شده است (٩).

در شکل (١٥) نگاره

۳۰ ms

NMR با استفاده از MS زنگ‌زن و سر سیگнал داده

به دست آمده است. شرایط دستگاه NMR

\(T_1 = ۶۰ ms \)

و موج نمایشی

\(T_2 = \frac{1}{6} \) sec

در شکل (١٦) NMR

\(M_{R1} \)

از راه‌ها تکنیک 2DFT

IMGR ۱۱۴ خ. × ۱۲۵۶

در شکل (١٧) نگاره

IMGR ۳۰ ms
Reference: