مکان رنگهای صفر اورست دریاختهای کبدیِ

دکتر رضا نقیسی
گروه شیمی پزشکی - دانشکده پزشکی - دانشگاه تهران

«مقدمه»

میکروسکوب الکترونیک تحولی عظیم در دانش یاخته شناسی پیدا کرده و جهان پنهان
سئتوپلاسم یاخته‌ای که در آغاز قرن میلادی پیکرتواختی و مشترک‌رسالتی در درهم بیجیده خود آن‌ها خلق کرده و بیش از استفاده از اولتراسانتریستوئوز مجزا ساختن عنصر مختلف
یاخته‌ای از پیکدر کمک امکان وظیفه کرده و پژوهشگران توسعه ترکیب شیمیایی و فعالیت
آنزیمی هریک از این عناصر را مطالعه کنند و ارتباط حیاتی و فیزیولوژیک آنها را بی‌پدید کنند.

یا بیش مشخص سازند.

اکنون میدانی که سرآسیدپلاسم یاخته‌ای، را تشکیلات تشريحي كه به 2 تورينه درون
پلاسمابی، 1 موسومند فاکتورهای[39،38]. تورینه‌هاي مد كور كه از دولابه تشکيل یافته‌اند
از پایه به دنبال باخته‌ای پیوند دارند و دانه‌آرا سرآسیدپلاسم را پیمودند، دولابآها ناب‌
پیکدر می‌باشد و پس از باخته‌ای در خروج میگیرند و بعضاً پس از باخته‌ای هسته بی‌پدید می‌شوند
[40] و مجله از پژوهشگران برآورد [42،۶] که تورینه درون پلاسمابی از نظر متغیره هسته موجود
می‌باشد و از همین‌جاست که درهم باخته‌ای هسته‌دار مشاهده می‌شود در حالیکه در کریچه‌های سرخ
بالغ دیده نشده است.

مدارک متعدد نشان می‌دهد که تورینه‌های درون پلاسمابی، مجاعه درون باخته‌ای هستند
که از این مجاعی مواد شیمیایی بدست آمده باخته‌را می‌بینند و آنزیم‌ها و درات ژنتیکی که در باخته‌های ساخته
* - این تحقیقات در بخش شیمی پاتولوژیک دانشگاه لیدز انجام گرفت و پژامست که می‌کند
اربِ انجا مراتب بیماری و امتحان خود را از استاد بهش مذکور
جهت اجرای این طرح و طرح‌های دیگر، همیشه مشوق و راهنمای نگارنده بوده‌اند اظهار دارم.

1 - Endoplasmic reticulum
شدهاند بخاری رانده میوشوند [۱۸۱۴۴۴۴].
بعلت تورنیه درون پلاسمایی که موجب سیتوپلاسم حفیظی یافتگه است عناصری بقطر
۵۰-۱۵۰ آنکتروم و موسم به ریبوزوم ۱ ایصال دارند این عناصر بخصوص از اسیدریبونکلیک
(RNA) ساخته شدهاند و مر کریپتونیت سازی یافتگه میباشند. ریبوزوم‌ها در سسلح تورنیه
درون پلاسمایی مشاهده نمیشوند و در قسمت از یافته تورنیه مذکور فاقد این عناصرند و
با اصالت سلط تورنیه دراین ناحیه ساختمان‌. این قسمت از تورنیه درون پلاسمایی که فاقد
ریبوزوم‌هاست شاید همان دستگاه کلزی ۲ باشد که مصنفان در کتاب کلاسیک بدر بدر ۳۷۱۲۱۲۱۲۱و درآن
در فضای بین تورنیه‌ها درون پلاسمایی، سیتوپلاسم حفیظی یافتگه مسکن دارد و درآن
عناصر متمدنی شناورند که ازجمله میتوکندری‌ها و لیزوزوم‌ها را باید نام برد.
با میکروسکوب معمولی میتوکندری‌ها به‌شكل رشته‌ای که بطور متغیر نیم میکرون قطر
و دمای میکرونز طول دارد مشاهده میشوند، میتوکندری‌های دیگری با ابعاد کوچکتر بیشتر
شدگاند [۴]. این عناصر در درون بااخته‌ها تورنیه میتواند در سیتوپلاسم باخته‌ای از
سوسی بسیار دیگر بزرگ‌تر کنند [۱۵] و ساختان میتوکندری‌ها یافته نیز با میکروسکوب‌الکترونی
نیک مطالعه شده است. غنیگ این عناصر را پرده دولایی تشکیل میدهد که لیه درونی انتصاب‌های
از خروج خارج می‌سازد و فضای درونی میتوکندری‌ها را بحره‌های کوچک تشکیل میکنند [۳۳].
ازجمله عناصر این درون سیتوپلاسم باخته‌ای لیزوزوم‌ها هستند به معنی دقتی روبره‌ای
آزمی‌ها موجود در آنان انجام گرفته است [۱۰] اما تاکنون از نظر میکروسکوپی مشخص
شدگاند و باندیده جمعی از پژوهنده‌ها گان این عناصر همان جغرافیا درون پروتوپلاسم هستند که
رونق‌ها بازی ازجمله آبی نولولونیدن و قرار داشتیه را بخاری میکروسکوپ [۴] و در این دانش‌های کبید
میتوان آن‌ها با بکمک اولترا میکروسکوپ در اطراف مجاری بین باخته‌های و صفرادی مشاهده
کرد [۲۹].

هرچند شیوه تجزیه شیمیایی عنصر مختلف باخته‌ای پیک قرن سابقه دارد و در آن اوان
دیمیتر بتجزیه شده‌اش باخته‌ها یپداخت [۲۷] و همچنین بسال ۱۹۱۳ واریبرز که تاییج حاصل از
تجزیه عنصر درون پلاسمایی را مشترک کرد [۴۹] با آن‌ها این روش تنها پس از شکار بردن

۱- Ribosome
۲- Golgi apparatus
۳- Mitochondria
۴- Lysosome
۳ - میکروزم ها (ذرات تورینه درون پلاسمای و روبوژوم ها) یک لیزوزوم ها که توسط نوریل میمونی است در کروه میتوکندری ها با میکروزم ها قرار گرفته.

۴ - مامع باقیمانده که به میرا باخته ۴ موسوم است و شامل سنتوپلاسم حقیقی

یاخته میباشد.

نرکیپ شیمیایی و آنزیم‌های موجود در کروه برخی از یک‌نواز

الف - هسته‌ها - اسید درنزی و ریبوزوتکلیک (DNA) منحصراً در این دسته قرار دارد و همان‌طور که میدانیم زن‌ها یا واحد‌های پیلوزیک توانایی از این ماده ساخته شدن اند علاوه بر این هسته محتوای اسید ریبوزوتکلیک (RNA) است، شیوه‌های رنگ‌گذاری اختصاصی نشان داده‌اند که ماده اخیر در هم‌ساخته گیرنده شده است. از چکنگ نرکیپ هسته‌ها هسته‌های مرگ‌یافته و مواد چربی بوپژوه شفت‌پروپیس ها را می‌توان نام برد.

۴ - هسته‌های باکثری و در چنین فسفر بالاسیون اکسیدانی است که روی آن از نیتروژ

جیات همانند واکنش‌های فسفر بالاسیون اکسیدانی میتوکندری هاست [۴۰] و در جریان این واکنش‌ها ذرات آدنوزین‌متوفسوت و ATP به آدنوزین نیتروژ ریزفست (AMP) مبدل می‌شوند، بجز از این دو فسفات هستند. نکلوتروپید که با یکسانی که می‌تواند در واکنش‌های حیاتی گردش دارد و در شدت می‌تواند [۴۰] و از آنها عبارتند از: اوریگینی تری فسفات (UTP)

اوریگینی دی فسفوگلیکز (UDPG)

(NAD) نیکوتین آمید - آدنین دی نکلوتروپید (NADP) ب - میتوکاندری‌ها - این انناس را جایگاه اساسی واکنش‌های فسفر بالاسیون اکسیدانی هستند [۴۱]. با لازه، سیستم آزوبیی داروی کربس و آدنوزینهای مؤثر در کانالولیس اسیدهای چرب واسیدهای آمینه و کولین در این کروه قرار دارد [۴۲]. ۰.۵ تا ۱.۵ و زن میتوکندری ها از مواد لیپیدی تشکیل یافته که بیشتر آن بسیار به فسفولپیس بیشتر در است [۱۹].

ج - میکروزم‌ها - چنین که در این دسته از شرایط از نرونه درون بالاسیای خرد شده و دانه‌های روبوژوم تشکیل شده است. همدآ آزمایش و پروتئین‌ها و فسفولپیس و چوک‌رونوون‌های این اند در نرونه درون بالاسیای خاصی میتوکاندری‌ها روبوژوم قرار دارند [۴۳].
از جمله آنزیم‌های موجود در تورینه درون بالسما بکر کشی فسفاتاز، کلسترول سنتاز، کلسترول استراز، نوی سیتوکروم اکیداز، ویتامین D₃ استراز و سرپنجام گلکوکورنیل ترانسفرازرا باشد نام برد.

گلکوکورنیل ترانسفراز [1368] بیوه‌پس اطلاعیه که‌شور آن در اینجا خواهد آمد ارتباط دارد، این آنزیم با شرکت‌داروریوندی در فنون گلکوکورنیل اسید (UDPGA) بلیویرین را در کید به بیله‌رویینگ- گلکوکورنیل مبدل می‌سازد.

5- شرط‌های باخته‌ای - این دسته شامل سیتوپلاسم‌های حقيقی یا باخته می‌باشند و از ترکیبات موجود در آن نوع های ریبوتون‌کلین مخلوط 1 است [1629] که اسیدهای آمینه را بجاده می‌سامان می‌باشد، ریبوژوما حامل می‌کند. ۳۵-۱۰ از باخته‌ادرین نشته یافت می‌شود. از آن‌ترم‌های این دسته ایزوسیریک دهیدزن، لاکتیک دهیدزن، بیروفسه‌فناز فسفاتیلیک، تراس آمیناز، گلکو کریش فسفات دهیدزنی و آنزیم‌های کلیکولیپتیک که کلیکوزن کرای اسید پیروپاتیک مبدل مایکیندز [26] باشد نام برد.

5- لیزوزوم‌ها - چنانکه کنست این دسته زمانی با میکروزوم‌ها و زمانی دیگر با میتوکاندی ها مخلوط می‌کردنند [15]. فسفاتاز اسید و بکرکلیکورنیاز، ریبوکاندز در کلیکولیپتیک و کانسپرسماز آنزیم‌های موجود در این دسته نشته. یکه‌گونه نشته آن‌ترم‌های مذكور همه مغز خاص‌مان بااخته‌ای است و در دوران حیات باخته‌شاملی ندارند و جمعی از پژوهش‌ها در این دسته که باره لیزوزوم‌ها و آنزیم‌های مصرفی نشانده نسبت‌های مرگ و سرآغاز مرکز باخته‌ایست [11].

از آنجایی با اختصاص کنست می‌توان از‌ساختار باخته‌ای کربونیل بست‌آورد و مطلب در خور توجه حرکت درون باخته‌ای نزدیکی‌ای در جریان واکنش‌های آنابولیسم است. چنانکه کلیکوزن دستیابی‌ای حقيقی باخته‌ای که بجاگاه واکنش‌های کلیکولیپتیک است به اسید پیروپاتیک مبدل می‌شود و میکروپاتیک دستیابی‌ای در واکنش‌های دوهو درک پانگ‌گوک‌مستوید و میکروزوم‌های مکن در کریش فسفات درون‌پلاسمایی دره فسفات خودرا از می‌سازد و کلیکوزن آزاد می‌شود.

همین امر در مورد حرکت بیله‌رویین درون باخته‌کردنی نواحی توجه لیست را بخود جلب کرد و بسازیت که دراینچا قطعی از نشان‌های تا نقل کنیم:

1- Soluble or Transfer RNA
2- Lath
نامه دانشگاه پزشکی
سال بست و یکم
۱۹۶۷

۵۱۶

۶ تجربیات ما و دیگر پژوهندگان (۱۹۶۷) نشان داد که میکروزوم هاجیمبا،
۷ تبدیل بیلیورین به بیلیورین کلولیورونید هستند. این مشاهدات سوال‌هایی بیان می‌کرد.
۸ جایگزینی را در مورد خرکت بیلیورین در باهاما کدی مطرح می‌کنند. این ماده
۹ در سطح باخته کبدی بحث مجموعه بیلیورین-‌ آلابومین است و در میکروزوم‌ها
۱۰ ترکیب میفود و سیس بمجاری صفرای بین باخته‌ای متخلل میکرید. درجریان،
UDPG در هسته‌ساخته‌ای,
۱۱ این تغییرات دیگر مکان‌های باخته‌ای نیز در نظر دارند. با یرا U DPGA
۱۲ بیلیورین و درستی‌الاکس باخته‌ای به
۱۳ میفود و سیس ماده‌ای خوره
۱۴ مسلج یادرون میکرودا مصرف کرایش بیلیورین به بیلیورین کلولیورونید
۱۵ [۲۵]

لیت و همکارانش در سال‌های اخیر همه کوشش خود را در راه هموسایا ساختن چکنکی
حرکت بیلیورین در باخته‌کی در باهاما کدی بگیر برخورد و در راه کمی بانهام همین منظور بود که نگارنه‌ای
این مقاله در صد و بدرده که میکرانگی صفرای دوست را در باخته‌کی کار معلوم نکن. مقصود از
درکنگی صفرای دوست مواد رنگینگی هستند که پس از ورود برخورد خون بسرعت بوسیله بارخته
کبدی جنب و همراه بانگرا دفع میکرود و برویدها میروید.

۱. B.S.P. است که نخستین بار سال ۱۹۶۵ بوسیله روزنال ۲ برای تعمیم ارزش کردن مصرف شد [۴]
واکنش به تحقیق پیشنهاد است که باخته‌ی گونه در ترسیم آن دخالتی ندارند و این ماده
از جبرای خون بوسیله باخته‌های پارامیت کید جدید میشود [۴۳] وقامت اعظم آن در باخته‌کی
کبدی با کلولیورونید که میکرود سیستم باخته‌کی از مصرف صفرای دفع میکرود [۲۸]
ماده رنگین صفرای دوست دیگری که مورد مطالعه قرار گرفت این هم‌سازان سبز
۲۳ I.C.G. است که نخستین بار در مایولینیک در هرمان‌گی کارفیلول وزیک قلب مصرف شد [۱۶]
وشکل و همکارانش نشان دادند که این ماده منحصراً اجزاء مجازی صفرای دفع میکرود و میتوان
آنرا همانند برای ارزیابی کار کی در برخورد [۵] با این هم‌سازان دوماده رنگینی که تفاوت
آناسی داوند و در حالیکه بحث ترکیب با کلولیورونید از راه مجازی صفرای دفع
میکرود بدون تغییر و بحث آن ارزیابی کنید میکرید و برویدها میروید.

1 - Bisodium Phenoltetrabromophtalein Sulfonate
2 - Rosenthal
3 - Indocyanine green
پانهم ساده رنگی که ما در تجربیات خود با کاربرد فنل فنیالین است که شیوه ترشح آن از بیماری جهان همانند بیلیورنین میباشد و در باخته کبدی به آسیب کلیکورنیک کرک می‌شود و بحث فنل فنیالین - گلو کورونید به مسیری آمیزه می‌شود [۳۴]. باز کردن فنل فنیالین همچون بیلیورنین در آب غیر محلول است و نهایاً بحث فنل فنیالین - گلو کورونید در آب حل می‌شود.

جدول شماره ۱ حالت رنگ‌های صفر ۱ دوست در خون و صفرا

<table>
<thead>
<tr>
<th>ماده رنگی</th>
<th>پلاسمای</th>
<th>صفرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S.P.</td>
<td>BSP - Albumin</td>
<td>BSP - Glutathione</td>
</tr>
<tr>
<td>I.C.G.</td>
<td>ICG - Albumin</td>
<td>ICG</td>
</tr>
<tr>
<td>فنل فنیالین</td>
<td>PP - Albumin</td>
<td>PP - Glucuronide</td>
</tr>
<tr>
<td>بیلیورنین</td>
<td>B - Albumin</td>
<td>B - Glucuronide</td>
</tr>
</tbody>
</table>

هرسی ماده رنگ‌های که نام بردیم در جریان خون به آلومین های پلاسمای بیوند دارند و

جدول شماره ۱ حالت هریک از آنها و همچنین بیلیورنین را در خون و صفرا نشان می‌دهد.

روش‌های آزمایشگاهی

موشهای ۲۵۰ - ۳۰۰ گرم تحت تزریق درون مغز مخلوط بیش از ۷۰٪ از بخش نسبی نمونه از بزرگ‌بودن کرم به مقدار ۱/۴ میکلول I.C.G. با یک فنل فنیالین ۳۰ برابر کرم B.S.P. در آب مخلوط در شرایط ۱۰ درجه سانتی‌گراد با نتایج قابلیت در آب مخلوط تهیه شده و محلول نیتروژن این‌دهسانه بروش زن.

میپاکردید.

این‌دهسیانه بنزین
آب مقطع
پلاسمای
کلوورسیدم

برای تهیه محلول نیتروژن ۳ فنل فنیالین به نسب میلی کرم از آینه ماده، قطره قطعه محلول

1 - Sheffield Rat
2 - Nembutal
3 - Spinco model L., Rotor No: 41
دوباره نرمال سود محرق افزوده ماده رنگین بطور کامل حل شود سپس با افزایش محلول دوباره نرمال جوهرنامه pH محلول را به ۷.۵ رسانده و با استفاده از ترانسیور برای دایمی این محلول اقدام نموده و یک دقیقه بعد از ترانسیور ماده رنگین کد خوانی را با جاروبردی و آنرا در محلول سرم فیزیولوژیک فوراً دادیم و در همان محلول کد را با یکی از بقیه قطعات کودک را به مرحله واکنشی روی محلول سرم فیزیولوژیک خوشه شسته دادیم و سپس قطعات را در رابطه کاغذ صافی یک را بدون تقدیم خشک نشود و آنان را توزین نموده و در دستگاه همکن ساز در محلول ۲۰. ملل کن کرم دری در سیستم کد دادیم و با سرعت سه هزار دور در دقیقه بند دو دقیقه همکن باخته‌ی را باخته‌ی و با افزایش محلول سرم کروم نسبت به ماده همکن را به خوبی تنظیم نموده که هر ده سانتی‌متر مکعب آن محتوی یک کرم نسبت به زیر کد باشد. و در همه حال علی‌عمالی مذکور را در ارتفاع سرد (۷۳ درجه سانتی‌گراد) بیابان رسانده.

سپس همکن باخته‌ی را در درست‌سازه‌ای اولتراستاتی بیو‌تا قرار دادیم و مدت ورود مشخص باخته‌ی (مستحکم و میلتو کندی را، میکروژیم، شیر باخته‌ی) را از یک‌پدید کردن و به مورد I.C.G. ماده رنگین را به‌کل استخراج نمودیم و با مقدار آن به محلول الکلی که گذشته.

آن معلوم بود مقدار ماده رنگین را در هریک از دسته‌ای باخته‌ی مشخص ساخته.

اندازه‌گیری کیفیت را برای تنظیم [۲۸] و اندوزه‌گیری کیفیت فانتاشی و فانتاشی &= BSP کاکورونی را برای مندرج در مجله بیوشیمی [۲۳] انجام دادیم و در همه موارد برای سنجد ماده رنگین دستگاه اسمیکریفوتوتریقا را بکر بردیم.

شیوه دیالیز به فشار خلاء انجام دادیم و برای این منظور لوله‌های دیالیز کارخانه هود را بکر بردیم. روش الکتروفورز استات سلولارا برای مشخص ساخته‌ای درست کرده و با استفاده از pH (۸.۴) و مدت ورود ماده رنگین کریم، زمان الکتروفورز با مقدار و استات جریان بیک میلی‌آمپر برای هر ۲۰ سانتی‌متر عرض کاذب‌سازی سلولارا برای میکروزا روش هالن [۴] و برای محلول ساخته‌ای میکروزا روش ایسک [۳] را بکر بردیم.

برای میکروزا روش هالن [۴] از سایر عناصر باخته‌ی از شیوه مندرج در مجله بیوشیمی [۹] استفاده نمودیم. در ورود هر یک میلی‌آمپر از محدودیت اشباع سولفات آمونیوم از V(C۱ - C۲) X = استفاده‌نمودیم که در آن X یک‌پدید کردن از نزدیک راه از فرمول ۲۰۰ C۲ و برای هر ۱۰ میلی‌اکس [۱]

1. Unicam Spectrophotometer SP 600
2. Visking dialysis tubing, Hudes Merchandising Co.
تعداد ساتیمتر مکعب محلول سولفات آمونیوم اشباع به‌اشتهای که با یک بیلی‌های پروتئین افزوده شود و 7 حجم محلول و C۲ درجه اشباع موجود و C۱ درجه اشباعی است که خواستار آن هستیم.

نتیجه

نخستین تجربیات ما نشان داد که رنگ‌های مختلف دریافت و دریافت کردن، در میکروزومها با در شیره بااختهای جمع‌میشونده متداوم‌های دسته‌ها و میکروزوم‌های دسته‌ها ناچیز و شاید ناشی از آلودگی دستگاه‌های میکروزوم‌ها باشد. جدول شماره ۲ تقسیم بر اختراعات میکروزومها و I.C.G. و B.S.P. را درست‌های مختلف بااختهای بررسی و جدول نشان می‌دهد:

جدول شماره ۲ - تقسیم مواد رنگ‌های در دسته‌های بااختهای

<table>
<thead>
<tr>
<th>شاهد رنگ‌های</th>
<th>شاهد بااختهای</th>
<th>میکروزوم‌ها</th>
<th>میکروزوم‌ها</th>
<th>میکروزوم‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S.P.</td>
<td>۰/۳۸۵ %</td>
<td>۰/۱۹۷ %</td>
<td>۰/۲۴۳ %</td>
<td></td>
</tr>
<tr>
<td>I.C.G.</td>
<td>۰/۱۶۷ %</td>
<td>۰/۳۷۶ %</td>
<td>۰/۵۳۶ %</td>
<td></td>
</tr>
</tbody>
</table>

پس از آنکه اطمینان باقی‌ماند که رنگ‌های متداوم در دسته‌ها، در شیره بااختهای یا میکروزومها متراکم‌تر به‌شانه اینکه این مواد رنگ‌کننده در این دسته‌ها اکتفا کرده‌اند و جدول شماره ۲ نتیجه چندین آزمایش را نشان می‌دهد.

جدول شماره ۳ سنتی مواد رنگ‌های در میکروزومها و شیره بااختهای

<table>
<thead>
<tr>
<th>شاهد رنگ‌های</th>
<th>شاهد بااختهای</th>
<th>میکروزوم‌ها</th>
<th>میکروزوم‌ها</th>
<th>میکروزوم‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد آزمایش</td>
<td>۱۹۸۵٪</td>
<td>۱۵۰۰٪</td>
<td>۱۸۵۰٪</td>
<td></td>
</tr>
<tr>
<td>شاهد آزمایش</td>
<td>۱۲۵۰٪</td>
<td>۱۸۷۵٪</td>
<td>۲۳۷۵٪</td>
<td></td>
</tr>
<tr>
<td>شاهد آزمایش</td>
<td>۱۵۸۷٪</td>
<td>۱۷۸۷٪</td>
<td>۲۱۸۷٪</td>
<td></td>
</tr>
<tr>
<td>شاهد آزمایش</td>
<td>۱۸۸۷٪</td>
<td>۱۸۸۷٪</td>
<td>۲۱۸۷٪</td>
<td></td>
</tr>
</tbody>
</table>

همانطور که مشاهده می‌شود در شیره بااختهای متراکم میکروزوم و شیره دانلیز نشان داده که ۹۸/۶٪ آن با پروتبین‌های شیره بااختهای پیوند دارد و ۱/۴٪ از ماده رنگ‌کننده آلودگی آورده است. برای شناسایی نوع پروتئینی که به پروتئین‌های شیره بااختهای یا از یکدیگر جدا کرده، همچنین که تصویری می‌شود ۲ نشان می‌دهد.
1. مایل

 Prize

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 BSP

 بانک ریالی

 B.S.P.
پیگیری در دوره دوقلو: تغییر لزومها و راه‌های تغییر در این دوره ناچیز بود.

فلن فتالین یک مرحله در میکروژمها متشکل از این مورد آزمایش کیک

بجای این ماده نوع ترکیب شده انسان، فنل فتالین - کلوروکربن بجای تریکلور شد. ۱۳۰۶/۱. آن در شیر باخته‌ای و نیز در یک میکروژمها موجود بود.

بحث

یکی از دو مرحله تغییر لزومها دوستی که در باخته‌ای کتی نخست ترکیب وسیع دفع میشود B.S.P (پلاستیک) و فنل فتالین مسلم است. این مواد باید از جانب بهبود آنلاینی که عامل

ترکیب آمانت است عبور کنند. پلاستیک و فنل فتالین هر دو با استفاده کلیکوژمیک ترکیب

میشود و عامل ترکیب آمانت (آنزیم کلروفوریل ترانسانز) در تروریون درون پلاستیاسی جای دارد. منطقی است که کفته شود این مواد از جریان خون نخت بنفیای دس و سپس از راه

مالیه نوریون درون پلاستیاسی باخته کتی وارد میشود و در آنجا بیلریون - کلروفوریید

و فنل فتالین - کلروفوریید مبدل میگردد.

در کیت با کلروفوریون ترکیب میشود و آنلاینی که این دوره با پیداگرفتن ترکیب B.S.P

نیکت در سیتوپلاسم باخته‌ای جای دارد. می‌توان نور در نجیریان خود B.S.P را بجای یافته کتی به راه فرسته کرد. بخش آنکه این ماده و همانند بیلریون و فنل فتالین نخست از راه مالیه نوریون درون پلاستیاسی

باخته کتی راه می‌پیماید و سپس از آنجا بیسیتوپلاسم حقیقی باخته وارد و در آنجا با کلروفوریون

ترکیب میشود، توجه دوم آن است که B.S.P غیر از ورود به‌نفیای دس بی‌کت فعالیت بیکنگ

نوشی باخته مستقیم دریافت سیتوپلاسم حقیقی باخته راه می‌پیماید. بدون آنکه از مالیه نوریون

درون پلاستیاسی عبور کند.

پذیرش قنالیه‌هایی از این دو فرضیه دریافت است. با این‌همه اگر توجه داشته باشیم که

ما در نجیریان خود نتبیز دقیقاً پس از تریکل، B.S.P قسمت اعظم آن‌ها در سیتوپلاسم

باخته‌ای باقی‌مانده، توجه ما به فرضیه درون بیشتر مصرف میشود و اگر نصوت کنیم که دوره برای

ورود رنگهای صفرای دوست به‌نفیای باخته کتی وجود دارد، یکی راه مالیه نوریون درون

پلاستیاسی و دیگری راهی که مستقیم سیتوپلاسم حقیقی باخته می‌شود، باشد به‌نحوی نتاوت

1. Disse's Spaces
2. Pinocytosis
نامه دانشگاه پزشکی
سال بست و پیکم
532
این دو راه را نویجه کنیم. تجربیات ما راه ابن توجیه در کسی که در آن بحث می‌باشد که از جمله بیلیروفیون و فنل فتاالین و I.C.G. (که در آن بحث می‌باشد) و در حالیکه B.S.P. در کار دارد، فنل فتاالین (نیز محصول در آن) از این ماده از مدیران محصول اخیر در سیتوپلاسم باخته‌ای و موجود داشته.

یکی از این بیلیروفیون و همچنین فنل فتاالین پس از آنکه در نورنده درون پلاسمایی بحالت گلوری کورونی در آمدند باز از مرحله دیگری از عمل مستقیماً نموده‌اند. در حالیکه می‌دانید، راه ابن این مطلب وجود دارد، از جمله جونون [1] است و همچنینکه می‌دانیم این منابع بیلیروفیون، کلر کورونی ومی‌باشد. اما انتقال بیلیروفیون، کلر کورونی از نوریته درون پلاسمایی به‌صورت صفریوین درون باخته‌ای و نشانه‌ای از این نادیده گرفته‌ای و دارد آنکه این مدل سیتوپلاسم دکتر براشید.

نوبکوف و همکارانش عقیده دارند، دانه‌های درون سیتوپلاسم که شاید همان لیزوزوم‌ها هستند عمل انتقال بیلیروفیون را در مرحله دوم انجام می‌دهند و دلیلی که بر سنت فرضیه خود ایراد می‌دهند. تدوین میکروسبکی الکترونی باخته‌ای که وسیله‌ای است که قبل از هالاکت‌بی‌طور مداوم بیلیروفیون به میانگین تزریق می‌شود. این توزیع تعداد زیادی دانه‌های مذکور در اطراف مجاری بین باخته‌ای صفریوین دیده می‌شود [27]، نوبکوف عقیده دارد که در سندروم دی‌بنج چون موارد معمولی در این دانه‌ها سبب کرده‌اند و بدن چهار از آن‌ها گذشته‌اند.

جذب بیلیروفیون، کلر کورونی و حلال بمب چون صفریوین بی‌پرمایند [9] از جانب دیگر وجود آنیمیاً لیزوزوم‌ها در سفرنا نشانه دیگری است که این دانه‌ها از باخته کنی به بمب مجاری صفریوین راه می‌پیوند و با لاقل محتوای خود را بردیون این مجاری می‌بینند.

با این‌نهایت، ما در تجویزات خود قادر نبودیم که نواکه موارد رنگین که در این نظریه‌ها مشاهده کنیم و این تجویزات مؤثر فرضیه نوبکوف نیست و بدن نشان حکم دارند. حکم این است باید در باخته کنی به پروفسوری و سیستیر ویر دانش‌های نیازمند است.
References

3- Bensley, R. R. et al., Anat. Record. 60, 449 (1934)
4- Brachet, J., in «Biochemical Cytology» Academic Press (1957)
6- Claud, A., Science, 97, 451 (1943)
7- « J. Exptl. Med. 84, 51 (1946)
9- de Duve, C., 59, 438 (1955)
10- « et al., Biochem. J., 60, 604 (1955)
12- Dubin, I. N., and Johnson, F. B., Medicine 33, 155 (1954)
14- Essner and Novikoff, J. Ultrasrtrut. Research, 3, 374 (1960)
17- Haguenuau,F. Arch. anat. microscop., Paris., 44, 27 (1955)
22- Javitt, N., Am. j. of Med , 30, 341 (1961)
24- Kennedy, E. P., J. Biol Chem., 179, 957 (1949)
27- Miescher, F., «Die histochemischen und physiologischen Arbeiten, » Leipzig (1897)
37- ε ε ε , Cancer Research., 16, 620 (1956)
38- Porter, K. R., J. Histochem. Cytochem., 2, 346 (1954)
39- ε ε , Federation Proc., 14, 673 (1955)
40- ε ε , Harvey Lectures., 51 175 (1957)
46- Siekevitz, P., J. Biol. Chem., 195, 549 (1952)
47- Stern, H., et al., J. Gen. Physiol., 37, 177 (1953)
49- Warburg, O., Pflügers Arch. ges. Physiol., 154, 599 (1913)