مکان رنگ‌های صفر در وسیعی دریاکشته‌های کبدی

دکتر رضا نفیسی

کروه شیمی پزشکی - دانشکده پزشکی - دانشگاه تهران

مقدمه

میکروسکوپ الکترونیک تحولی عظیم در دانش یا انجام مسیری پیدا کرده و جهت پنهان
سیتوپلاسم باخته‌ای که در آغاز قرن میلادی بیکاریتیشن به‌رسیده و در مراحل اخیر
سیتوپلاسم و شکل‌گیری مولکول‌ها بسیار وسیعی داشته و با توجه به این
باخته‌ای از پکتیک، امکان پذیری کردن و پژوهش کردن توسعه ترکیب
شیمیایی و فعالیت آنزیمی هرکه از این عناصر مطالعه کنند و ارتباط حیاتی
فیزیولوژیک آن را با یکدیگر کن

یا بیش مشخص سازند.

بسیاری از نتایج که سراسر سیتوپلاسم باخته‌ای را تهیه کرده کم به توان یا
پلاسمای، یک موسومند در الکتریکی [1, 29, 39]. توزیع‌های ماد که از ولایه تشكیل
از وسیعی به غناد باخته‌ای بیوند دارند و باید که سراسر سیتوپلاسم را نامیدند، دولای نخاز
پکتیک، میشود و همه باخته‌ای در خروج میگردد و بیمارت دیگر به‌عنوان خسته می‌شود
[10] و جمعی از پژوهشگران برآورده [24، 40] که توان یا درون پلاسمایی از غناد خسته به وجود
می‌آید و در هنگامی که در داخلی باخته‌ای هستند، داروها می‌شود در حالی به کریپهامی
بالغ ریزه نشته است.

مدارک متعدد نشان می‌دهد که توزیع‌های درون پلاسمایی، جهت درون باخته‌ای هستند
که از این جهت بر روی مواد شیمیایی و درون باخته‌ای می‌یابد و نورانی از هر دو نکات
که در Prof. G. H. Lathe انجام مراجعه و استاد بخش مذاکور
گریبان اجرای این طرح و ترجمه دیگر و مشوق و راهنما تکنولوژی بوده و اظهار می‌دهم,
1 - Endoplasmic reticulum
شماره و نام مبتکر
سال پست و یکم
نامه‌ی‌انگلیسی پشتکی
512

شماره خارج رانده میشوند [18 136 14] .

بلعیشورنامه‌ی درون پلاسمایی که مجاور سیتوبلاسم حقیقی‌یا خاصه‌ی این عناصری بفرآور
150–500 آن استروم و موسم به رایژوم 1 است اصلی‌اند. این عناصری را از اسیدریبونکلیک
(RNA) ساخته‌ی شده‌اند و امر کوریوئین مایوزایی‌یا میباین . رایژوم 2 در سرطانی‌یا میباین
درون پلاسمایی مشاهده میشوند و در قسمتی‌یا محور میکروفاژال این عناصری و
با اصلحی سطح توربیک در این ناحیه‌ی سطح میباین . این قسمت از توربیک درون پلاسمایی که فاقد
رایژوم 3 هست شاید همان دستگاه کلیز 2 باشد که مسئله‌ی در کتاب کلاسیک نشری پرداخته‌یاند
[17 6361] .

در فضای بین توربیک‌های درون پلاسمایی ، سیتوبلاسم حقیقی‌یا خاصه‌ی این عناصری مسکن دارد و در آن
عناصر مرکزی مشاوری که از آنها میتوکاندروها و رایژومهها را باید نام برداری کرد.
با میکروکوک معمولی میتوکاندروها بکار رفته‌ها که بطور متوسط نیم میکرون قطر
و دو میکرون طول دارد مشاهده میشوند . میتوکاندروها و دیگر دیگر دیگری با ابزار کوچک‌تراز دیده
شده‌اند [2] . این عناصر در درون باخته‌یا متحرک هستند و میتوانند در سیتوبلاسم باخته‌یا از
سوبی‌های دیگر عزیمت کنند [15] و همگونی میتوکاندروها بوجود می‌آورد با میکروکوک‌ها که
نیک مطالعه شده است . غشا این عناصر را یکی دوباری تشکیل میدهد که لازم دو دیگر انتسابی
از خروج خارج میسازند و فضایی درونی میتوکاندروها را بحجاره‌های کوچک تشکیل می‌کنند [16] .
از آنجا باخته‌ی با رایژوم باخته‌یا لیزوزوم‌ها هستند که مطالعات دقیقی درباره‌ی
آن‌ها موجود در آن‌ها انجام گرفته است [10] اما تاکنون از نظر میکروسکوپی‌یا مشخص
نشده‌اند و باید باید به‌عده‌ی این باختره‌ها درون پروتوکلاس‌ها هستند که
ویژگی‌های بازی، از آنجا آب‌ها تولید و وقوع‌های را بخود میکروکوک [13] و در آن‌ها کبدی
میتوان آن‌ها را بکمک اولترا میکروکوک در اطراف مجاور بین باخته‌یا و صفراوی مسئله‌ی
کرد [29] .

هرچند شیوه‌ی تجزیه شبیه‌ای عناصر مختلف باخته‌یا بک قرن سابقه دارد و در آن‌اوان
دیشی، تجزیه‌ی شبیه‌ای باخته‌یا بردخات [17] و معمولی تبیین حاوی از
تجزیه‌ی عناصر درون پلاسمایی و منتشر کرده [49] با اینه‌ی این روش تنها بس از بکار بردن

1. Ribosome
2. Golgi apparatus
3. Mitochondria
4. Lysosome
کمیسیون‌های ۱ ساختنی و جهدای

اولتراپلزندهای رونیکرفت و سال ۱۹۶۴ مجوز‌ساختن میکروسکوپ‌یابی امکان‌پذیر شدید [۳] و پس از اینکه سال‌های بیش از برده قدرت ماده سم هزار گ افزایش یافته در گستن‌های اولتراپلزندهای ساختنی بر رونیکرفت عناصری که با میکروسکوپ‌های عمومی مشاهده نمی‌شوند آماده گردید و عناصر میکروژوم را میکروژوم ۳ نامید [۱، ۳، ۹، ۷]. بعداً ثابت شد که میکروژوم‌ها شامل ذرات خرد شده تری‌پلاستیک درون پلی اسپان و همچنین ذرات ریبوژوم هستند [۴، ۵، ۶، ۷].

برندهای روشن کلاسیکی که مصنفان دیگر تغییرات در آن داده‌اند [۱، ۵، ۱۳] تکثیف یا اصالت ساختنی و جهدای در اولتراپلزندهای رونیکرفت قرار می‌دهند و بایستی از نحوی استفاده می‌شود که از بخش‌های زیرها از جایگاه‌های جدا می‌سازند.

\[R \times (\text{rpm})^2 = 1118 \times 10 \times g \]

۱ - میکروسوم
۲ - Homogenizer
۳ - Homogenate
۳ - میکروژم ها (زنده توریه درون پلاسمای و ریبوپوزوم ها).

۴ - لیزر زوم ها که بر حسب نیرویی ممکن است در کروه میتوکندری ها با میکروژم ها
قرار گیرند.

۵ - مامع باقیمانده که به شیره باختهای ۱ موسوم است و شامل سیتوپلاسم حقیقی
یا خته میباشد.

نرکب شیمیایی و آنزیم های موجود در مرغ کروه بقار زیستات:

الف - هسته‌ها اسید درکسی و ریبونوکلیک (DNA) منحصراً در این دسته قرار دارد و
همانطور که میانه زن ها یا واحد های بیولوژیکی توارت از این ماده ساختمان علاوه
بر این هسته محتوی اسید ریبونوکلیک (RNA) است که اینن رنگ رنگ اخضاعی انتساب
داده که ماده اخیر در تکتیپ جایگزین شده است. از نظریک هرکی است. هسته، هستون و مواد
و جزیی تری بیوه فسفولیپید ها در میان نام برده.

ب - هسته جایگاه نوعی واکنشی فسفر بلاسیون اکسیدانی است که در آن اکسیژن
جزئی تری دو وکسیلیزیون اکسیدانی میتوکندری هاست [۳] و در جریان این
واکنش سه نوازنده دانوسیکلر میافتد (AMP) به آداوین (NAD)
واکنش دانوسیکلر نوکلئوژم ها و سایر ساختارهای اکسیدانیکی به دنبال آن اکسیژن در و اکش های
حیاتی شرکت دارند درهم ساخته میشوند [۴] [۵] و از آنها عبارتند از :
اریلرده دانوسیکلر (UTP)
اوریلرده دانوسیکلر (UDPG)
(NAD)
(NADPH)
پ - میتکندری ها - این عنصر جایگاه اساسی واکنش های فسفر بلاسیون اکسیدانی
است [۱۹]. به علاوه بیشتر آنزیم‌های دوره کریست و آنزیم‌های هورن در میان اسیدهای جز
واکنش های آمینه و کولین در این کروه قرار دارند [۴] [۵] [۶]. وزن میتوکندری ها از
مواد لیپیدی تشکیل یافته که بیشتر آن برای فسفولیپید بیوه فسفری است [۱۹].

ج - میکروژم ها - جایگاه کشفی این دسته ازدیدات توریه درون پلاسمای خرد شده
و دانوسیکلر نوکلئوژم تشکیل یافته است. همچنان این دسته از تورینه درون پلاسمای و ریبوپوزوم ها و فسفولیپید و همکروروزون
این دسته در ذرات تورینه درون پلاسمای واسید ریبوپوزوم در ذرات ریبوپوزوم قرار دارد [۵].

1 - Cell Sap or Supernatant Fluid
از جمله آنزیم‌های موجود در تریانونه درون پلاسمابی کلسترول شش فسفاتاز، کلسترول سنتئاز، کلسترول استراز، نمایی سیتوکروم اکیداز، ونیاتین و آ، استراز و سرانجام کلروکورتیول ترانسفرازرها باید نام برد.

گلوکورونیل ترانسفراز [2013-84] وبزه‌بامالاتی که کیوئیش آن در اینجا خواهان آمد ارتباط دارد، این آنزیم با کرک داواری، دیافلور، کلروکورتیول اسید، (UDPGA) بیلبیرونین را در کبد به بیلبیرونین کلروکورتیول مبدل می‌سازد.

5 - شریع باخته‌ای - این دسته شامل سیتوپلاسم حقيقی یا باخته می‌باشد و از ترکیبات موجود در آن نوعی اسید ریبونوکلئیک مخلوط 1 است [17-376] که اسیدهای آمیده را بهبود یافته‌ی پروتئین سازی باخته، ریبونوکلئیک حامل می‌کند. از این باخته‌ی درون‌دسته یافت می‌شود. از آن‌زمینه‌ای این دسته ایزوپریک دیدرژن‌از، لاکتیک دیدرژن‌از، بیروبیونژ فسفاتاز، فسفاتازیلی، تراس آمیناز، کلیوگراش فسفات دیدرژن‌از و آنزیم‌های کلیکولیپتک که کلیکوزین را به اسید بیبیرون مبدل می‌سازند [22] باید نام برد.

5 - لیپوزوم‌ها - چنان‌که گذشته این دسته زمانی با میکروزرها و زمینی درک با میتوکندری‌ها مخلوط می‌کردند [1]. فسفاتاز اسید ریبوگلوکورتیولز، ریبوگلوکاز دزکی - ریبوکلاژ و کانسپسیون آنزیم‌های موجود در این دسته‌اند. نکته‌ی اینجا آن است که آنزیم‌های مزبور هم مغز ساختن باخته‌ای هستند و در دوران حیات باخته‌ی فعالیتی ندارند و جمعی از پژوهندگان در این دست که پاره دیدن لیپوزوم‌ها و آزاد شدن آنزیم‌های مغز باخته‌ی تغییرات مهری و سرآغاز مرکز باخته‌ایست [11].

از آنجا به‌اختصار گذشته میتوان از اساساً باخته‌ای باخته‌ای تصدیق بسته‌ای که و مطلوب در خور توجه حرکت درون باخته‌ای نرخ شش‌بایی در جریان واکنش‌های آنتاولپیمی است. چنان‌که کلیوگراش درستی‌پلاسم حقيقی باخته که جابجای واکنش‌های کلیکولیپتک است به اسید بیبیرونیک مبدل می‌شود و حیسب اسید بیبیرونیک دیمونوکورتیولز حاصل به‌کار گرفته‌می‌شود و می‌شود. همچنین کلیوگراش این دسته درون‌بیپلاسمایی دیف فسفات خودرا ازدست‌می‌دهد و کلیوگراش آزاد می‌شود.

همین امر در دوره‌ی حرکت بیبیرونی درون باخته‌ی کبدی نوچه‌ی لیت؟ را پنجم جلب کرد و

براساس که در اینجا قطعه‌ای از فومنه‌ای اور را نقل کنیم:

1 - Soluble or Tranfer RNA
2 - Lathé
تجاریات ما ودیگر پژوهندگان (1967) نشان داد که میکروزوم هاجیکا،
تیبیدل بیلیپروین به بیلیپروین کلو کورونید هستند این ماهددها سوال‌های بسیاری جالب توجهی را در مورد حکت بیلیپروین در بیماری کبدی مطرح می‌کند این ماهدها درعمل باخته کبدی بیماری مصرف بیلیپروین ابست و درمیکروزوم ها
ترکیب میوه و سیس بمجاری صفراء بین باخته ای منتقل میگرد درجریان،
این تغییرات دیگر مکان‌یابی باخته ای نیز که دارندزبیرا UDPG درهم سخته،
میوه و درستیولام باخته ای به تیبیدل میگرد و سپس ماده‌ای دیگر UDPGA
محل بادرون میکروزوم ها به‌صورت کرایش بیلیپروین به بیلیپروین به کلو کورونید
میروند [25، و 26] لیت و همکارانش در سال‌های اخیر همه کوشش خود را در راه هموگاما ساختن چکوکنی
حرکت بیلیپروین در باخته کبدی بکار برده بود و در راه کمک بر انجام همین بود به نگاه‌نوازی این مقاله درصد برآمد که مراکز صفراء دوست را در باخته کبدی معلوم کند مقصود از
رنگهای صفراء دوست مواد رنگین هستند که پس از ورود بیجربان خون بسرعت بوسیله باخته کبدی جنب و همراه با مصرف دفع میشود وبروده میرزید
این یکی از رنگهای صفراء دوست B.S.P. است که تخته‌بر سال 1965 بوسیله روزنال 2
برای میشود از ریزه کرکب مصرف شد [44]
واکنش مبتنی بر هیدروکلریت است که باخته‌های کوئین در ترسیح آن دخالتی ندارند و این ماده
از جبریان خون بوسیله باخته‌های پاراپاشم کبد جنب میشود [43] وقلمد اعظم آن در باخته‌های
کبدی با کلوکوپتوپین ترکب میشود وسپس بحالت ترکب از مجاری صفراء دفع میشود و میرزید [26،8]
ماده رنگین صفراء دوست دیگری که مورد مطالعه قرار گرفت انیسوسپراینسپر ین
I.C.G. است که تخته‌بر در مایکلوکینک درازقیابی کارفیوزولوزیک قلب مصرف شد [16]
وشکرک و همکارانش نشان دادند که این ماده منحصراً از راه مجاری صفراء دفع میشود و میرزید
آنها همانند بیماری‌های کبدی بکار برده [5] با این‌ها این دو ماده رنگین یک تفاوت
اساسی دارند و در حالتی که بحالت ترکب با گلوکوپتوپین از راه مجاری صفراء دفع
میشود بدون تغییر و بحالت آزاد از از جبریان کبدی میکدرد وبروده میرزید.

1 - Bisodium Phenol tetra bromophtalein Sulfonate
2 - Rosenthal
3 - Indocyanine green
شماره ششم

سومین ماده رنگینی که ما در تجربیات خود به بکار بردن فنل فتاژین است که شیوه ترکیب آن از بسیاری جهات همانند، بیلیورین میباشد و در باکره کبدی با آسید کلیکورنیک ترکیب میشود و بحلقه فنل فتاژین گل کورونید بجنگی سفرای میوزید [۲۴]. با این حال فنل فتاژین همچون بیلیورین در آب ایزی محلول است. و نهایتاً بحلقه فنل فتاژین گل کورونید در آب حل میشود.

جدول شماره ۱ حالت رنگهای سفرای دوست درخون و صفرا

<table>
<thead>
<tr>
<th>ماده رنگین</th>
<th>پلاسا</th>
<th>صفرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S.P.</td>
<td>BSP - Albumin</td>
<td>BSP - Glutathione</td>
</tr>
<tr>
<td>I.C.G.</td>
<td>ICG - Albumin</td>
<td>ICG</td>
</tr>
<tr>
<td>فنل فتاژین</td>
<td>PP - Albumin</td>
<td>PP - Glucuronide</td>
</tr>
<tr>
<td>بیلیورین</td>
<td>B - Albumin</td>
<td>B - Glucuronide</td>
</tr>
</tbody>
</table>

هرسه ماده رنگینی که نام بردن در جریان خون به آلیومین های پلاسا پیوند دارند و

جدول شماره ۱ حالت هریت از آنها و همچنین بیلیورین را در خون و صفرا نشان میدهد.

روش های آزمایشگاهی

موش های ۳۰۰ - ۶۰۰ گرم تحت تزریق درون سفینه محلول به حسب کننده نمودیل ۲ (۷/۰/۰ سانتی‌متر مکعب برای هر سدکرومبوزن موشی) به کار رفته و

سپس جداگانه بی‌سر می‌کنید از رنگهای B.S.P. I.C.G. I.G.F. یا از فنل فتاژین ۰/۱ ملکول کرم برای هر سدکرومبوزن موشی بین کمک راند تزریق شده.

محلول تزریقی B.S.P. در آب متخلوط تهیه شده و محلول تزریقی ایندوبسیانین بر روی زیر میباشد.

<table>
<thead>
<tr>
<th>محلول تزریقی B.S.P.</th>
<th>8 میلی کرم</th>
<th>7 سانتی‌متر مکعب</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 5 4 3 2 1</td>
<td>شیوند سپیلاز</td>
</tr>
<tr>
<td></td>
<td>آب متخلوط</td>
<td>پلاسا</td>
</tr>
</tbody>
</table>
| | کلورورسید ۱/۰ ۰ | برای تهیه محلول تزریقی فنل فتاژین به بست میلی کرم از برین ماده، قطره‌های محلول

1 - Sheffield Rat
2 - Nembutal
3 - Spinco model L., Rotor No: 41
دوباره نرمال سود محروق افزوده نتایج یافته داده دهانه سیس با یافته محلول دوباره نرمال جهت تغییر PH محلول را بهداشتی می‌تواند با اضافه‌ی تغییر محلول آزاد است. از محلول اقیان نمودم به چهار رنگ افزوده جای این محلول یکی چهار کمربند آن از دنباله کمربند در محلول سرم فیزیولوژیک کنار داده و در همان محلول کن یا به‌خصوص دسته گروه تنش افزوده می‌کند. زیرا یکی از دنباله نمودم که در دستگاه همکن ساز در محلول ۲۰ درصد کروم در دیتریپ سرودی نرم محلول و با سرعت سه شرایط دوربین به دقت همکن یافته‌ها یا افزوده محلول سرودی نسبت‌هایی ماده همکن را برای تنظیم نمودم که هر ده سانتی‌متر مکعب آن محلول به کرم نمود کنکید باشد. و در همکن کلیه عملیات‌ها مذکور وا در طول سرد (24 درجه سانتی‌گراد) بی‌بان رسانیدم.

سپس همکن یافته‌ها را درستکاری اولتراشتی‌فیوزا فارادریم و نمونه‌ریزی با اختلال (рукس‌ها و میتوکندری‌ها، میکروازوم‌ها، شیر، یافته‌ها) را از یکدیگر جدا کردم و در مورد I.C.G. ماده رنگین را بالا داشته‌ایم که استرخیار نمودم و با ماما آن را متفاوت آن با محلول کلیه که تولید گردیده. آن معلوم بود مقدار ماده رنگین را در آب ریز از دسته‌ای یافته‌های مشخص ساخته‌اند. اندکی کریستالی BSP را بر روی تبلور و اندام کریستالی و نانو و نانو- کلم کریستالی را بر روی نانو در مجهز به‌وجبی [۳۳] انجام دادم و در دومه موارد برای سنجش ماده رنگین دستگاه استینفورمومترا را با کار بردن.

شیوه دیالیزی برندی فلتر خلا انجام دادم و برای این منظور ولی‌های دیالیز کارخانه‌هایی را با کار بردن. روش الکتروفون استاس سولزرا برای مشخصات ساخته‌ای یافته‌ای رنگین دستگاه‌های کریستالی استفاده کردم، زمان الکتروفون بکمک رشتی جیرابان یک میلی‌میتری برای ۸۰-سانتی‌متر عرض کاغذ استایل‌سازی سولزرون. برای مجزا ساختن بی‌روی‌ها و ذرت نورند درون پلاسما در میکروشما روش هالین [۶۰] و برای محلول ساختن میکروشما روش ایسل باکر [۶۱] را با کار بردن.

برای مجزا ساختن لیزر ها از سایر عناصر با دستگاه الکتروفور تغییر‌های مختلف یافته‌ها را در دو درجه منغیاب اشباع سولفات آمونیوم از Y[۹] استفاده نمودم. و در این راه از فرمول X =

1 - Unicam Spectrophotometer SP 600
2 - Visking dialysis tubing, Hudes Merchandising Co.
نتایج
نخستین تجربیات ما نشان داد که رنگ‌های سفراوی دریخته کبیدی، در میکروزمها با در شیره باختهای جمع میشود و مقدار آن در همه میکروزمها و میکروزمها ناچیز و روی آن مشاهده نمی‌شود. تحقیقات اخیر این موضوع باشد. جدول شماره ۲ توصیف را در اینجا می‌کنیم:

<table>
<thead>
<tr>
<th>میکروزمها</th>
<th>میتوکندری‌ها و همستها</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSP</td>
<td>۸۵ /۵.۷۸۷ /۵.۹۹ /۵.۷۸۷ /۵.۷۸۷ /۵.۷۸۷</td>
</tr>
<tr>
<td>ICG</td>
<td>۸۶ /۵.۹۹ /۵.۹۹ /۵.۹۹ /۵.۹۹ /۵.۹۹ /۵.۹۹</td>
</tr>
</tbody>
</table>

پس از آنکه اطمینان به دست آمده که رنگ‌های سفرا می‌تواند در شیره باختهای وارد شود، در اینجا می‌توانیم به میکروزمها متراکم شوند نه تنها به دلیل کیفی مواد رنگ‌دان در این دسته اکتفا کرده و جدول شماره ۳ توضیح چندین آزمایش را ارائه می‌دهد.

جدول شماره ۳: نسبت مواد رنگ‌دان در میکروزمها و شیره باختهای

<table>
<thead>
<tr>
<th>بیانگری</th>
<th>میکروزمها</th>
<th>میکروزمها</th>
<th>میکروزمها</th>
<th>میکروزمها</th>
</tr>
</thead>
</table>

همانطور که مشاهده می‌شود، در شیره باختهای متراکم میکروزمها و شیره باختهای B.S.P. دارد که ۸۵/۹۸۸٪ آن با پروتئین‌های شیره باختهای بیوپرداز دارد و تنها ۲/۱٪ از میکروزمها بلافاصله آزاد است. برای شناسایی نوع پروتئین‌ها به بیوپرداز B.S.P. پروتئین‌های شیره باختهای را از یکدیگر جدا کرده و همچنین که توصیه می‌شود، ۲ نشان می‌دهد.
لیزوئم ها را برای تعیین مقدار B.S.P و I.C. G از سایر عناصر یا خصوصاً مجزاساختم.

و در هر دو مورد مقدار مواد رنگی در این دسته ناچیز بود.

فلت فعّالین همانند B.S.P در میکروژمها متردام می‌باشد اما در یک مورد آزمایشی که بجای این ماده نوع ترکیب شده آن، فلت فعّالین - کلوکورونید بعنوان تریک شد ۹۷٪. آن در شیر بایکه‌ای و نیز ۳۳.۳٪ آن در میکروژمها موجود بود.

بحث

یک نکته در مورد درکه‌ای سفر در دستی که در ایجاد میکروب ترکیب کیز و سپس دفع میکروژم بسیار بی‌پردازه بود، B.S.P (یکی از بخش‌های ترکیب آن) است. این موارد به‌دیکی از جایگاه آنزیمی که عامل ترکیب آن عبور کرده است- بسیار بی‌پردازه و نه در بایکه‌ای که اسید کلوکورونیک ترکیب میشود و عامل ترکیب آن (آنزیم کلوکورونیل ترانسفراز) در توانایی درون پلاسما بایکه دارد. منطقی است که کفته‌ها شود این موارد از جهان خون نخست نظیره دیس و سپس از راه سطحی ترین درون پلاسما بایکه کیز وارد میشوند و در آنجا بسیار بی‌پردازه کلوکورونیک و فلت فعّالین - کلوکورونیک می‌گردد.

در کیز با کلوکوتانیون ترکیب میکروب و آنزیمی که این دورا با یکدیگر تر کیز B.S.P میکند در سیتوپلاسم باخته‌ای جای دارد. هما نیز در ترگربات‌خود B.S.P را بدور یا باخته‌کیده بود راه توجه کرده یک آنکه این ماده عمانی بسیار بود و پس از آن‌جا بسیروپلاسم حقيقة باخته‌یارد و در آنجا با کلوکوتانیون ترکیب میکروب. توجه به دو آنست که B.S.P بس از ورود بخشی دیس بی‌که قابلیت بی‌میک یک نوشی باخته مستقیم بدور سیتوپلاسم حقيقة باخته راه بی‌میک یاد، بدون آنکه از مجاری‌های ترین درون پلاسما بایکه دارد.

پذیرش فلیکل هریک از این دو فرضیه دشوار است. با اینهمه اگر توجه داشته باشیم که

ما در ترگربات‌خود، تنا بی‌وقت پس از تریک B.S.P قسمت اعظم آن‌ها در سیتوپلاسم باخته‌ای پاگیراها، توجه به فرضیه دوم می‌شود و اگر تصور کنیم که دوراه بی‌میک ورود رنگ‌های سفر و دوست بدور بایکه کیدی وارد دارد، یکی راه‌ها می‌دارند ترین درون پلاسما و دیگری راهی که مستقیم بسیروپلاسم حقيقی باخته‌یارد، با یاد بی‌نوی نیست.

1. Disse’s Spaces
2. Pinocytosis
نامه دانشگاه پزشکی
سال بست و یکم

این دوره را توجیه کنیم. تجربیات ما راه این توجهی را کشیده است، که کلیات صرف‌دوزی که در آب ناخال‌آبادی از جمله بیلی‌بوربوین و فنال‌فلاتین و I.C.G که در آب بیست و هفتمین بیماری‌های دیگری از راه مجاری ابوت‌میونیا درون پالسونیا باخثه کرده بود. در حالی که بسیاری از دندانپزشکان بیشتر به این موضوع توجه نمی‌کنند، ما نیز می‌پذیریم این فرضیه است. در واقع موردی که باید فنال‌فلاتین (غیر محلول در آب) فنال‌فلاتین - کلوکورونی (محلول در آب) بحیوان تزریق شد ماده‌ای دیگر در سیتوپلاسم باخته‌ای وجود داشت.

بی‌جامت که بیلی‌بوربوین و همچنین فنال‌فلاتین پس از آن‌ها در دوره‌های پلی‌آپلاسما بحث‌کرده‌ام و نتایج کلی از آن‌ها در پلی‌آپلاسما بحث کرده‌ام. کلوکورونی در آب‌میوابیده از مرحله دیگری و بر آن‌ها که با مجاری صرف‌دوزی بین باخته‌ای راه یابند، می‌تواند وجود سندروم دوین - جونسون [12] است و همچنینکه می‌دانم در این سندروم، بیلی‌بوربوین باخته‌ای کاری به مذکره و در آنجا به بیلی‌بوربوین کلوکورونی می‌شود. اما انتقال بیلی‌بوربوین - کلوکورونی از توریزه درون پلی‌آپلاسما به مجاری صرف‌دوزی بین باخته‌ای انیجام نمی‌کند. از این‌رو ماده‌ای مذکور به خون باز می‌گردد و ناشانه‌ای بر آن‌ها ارسالی و نقاط می‌باشد، بدون آن‌ها اندازه‌گیری صرف‌دوزی درکار باشد.

نوبکوف و همکارانش عقیده‌دارند که باز همان لیزوزیم‌ها هستند. عمل انتقال بیلی‌بوربوین در مرحله دوم انجام می‌دهند و دلیل که برحسب فرضیه خود ارائه می‌دهند تشویق میکروسکوپی الکترونی باخته‌ای که محیطی قابل قبول از هالاکت در بر می‌گیرد تکرار تزریق می‌شود است. در این تصویر تعداد زیادی دانه‌های مذکور در اطراف مجاری بین باخته‌ای صرف‌دوزی دیده می‌شود [29] و به‌طور عمده داده‌ها در سندروم دوین - جونسون موازی‌العملی نیست و بی‌شک که این دانگه زمانی که گرم‌دانه‌ای از جذب بیلی‌بوربوین - کلوکورونی و حمل‌اندی مجاری صرف‌دوزی بر پر رمپیاپند [4] از جانب دیگر وجود آنزیم‌های لیزوزیم‌ها در ورزش نشانه‌ای دیگری است که این دانگه‌ها از باخته‌ای کاری به مجاری صرف‌دوزی راه یابند و با لاقاب محیطی خود را به‌طور این‌گونه معماری می‌کنند.

با این‌نیروهای در نظر گرفته‌ی که براکم مواد رنگین‌ها در لیزوزیم‌ها مشاهده کنیم و این تجربیات موثر فرضیه نوبکوف نیست و بدون شک حل مسئله حربک ذرات شیمیایی در باخته‌ای کنی به یک‌روش‌های وسیع‌تر و بر درمان‌های نیازمند است.
References

3- Bensley, R. R. et al., Anat. Record. 60, 449 (1934)
4- Brachet, J., in «Biochemical Cytology» Academic Press (1957)
6- Claud, A., Science, 97, 451 (1943)
7- «, J. Exptl. Med. 84, 51 (1946)
9- de Duve, C., 59, 438 (1955)
10- «, et al., Biochem. J., 60, 604 (1955)
12- Dubin, I. N., and Johnson, F. B., Medicine 33, 155 (1954)
24- Kennedy, E. P., J. Biol. Chem., 179, 957 (1949)
27- Miescher, F., «Die histochemischen und physiologischen Arbeiten, » Leipzig (1897)
37- « «, Cancer Research., 16, 620 (1956)
38- Porter, K. R., J. Histochem. Cytochem., 2, 346 (1954)
39- « «, Federation Proc., 14, 673 (1955)
40- « «, Harvey Lectures., 51 175 (1957)
46- Siekevitz, P., J. Biol. Chem., 195, 549 (1952)
47- Stern, H., et al., J. Gen. Physiol., 37, 177 (1953)
49- Warburg, O., Pflügers Arch. ges. Physiol., 154, 599 (1913)