Volume 74, Issue 3 (June 2016)                   Tehran Univ Med J 2016, 74(3): 159-167 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami M, Nazari S, Farzadkia M, Majidi G, Alizadeh Matboo S. Assessment of nanopolyamidoamine-G7 dendrimer antibacterial effect in aqueous solution. Tehran Univ Med J 2016; 74 (3) :159-167
URL: http://tumj.tums.ac.ir/article-1-7458-en.html
1- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran.
2- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran. , shahramnazari73@yahoo.com
3- Department of Environmental Health Engineering, School of Public Health, Qom University of Medical Sciences, Qom, Iran.
4- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran.
Abstract:   (5326 Views)

Background: Poly(amidoamine) (PAMAM) dendrimer derivatives have been investigated for their biological applications, especially for delivery of drugs, including antimicrobial drugs to eukaryotic cells, but their effects on bacterial cells are largely unexplored. Nanotechnology and its application is one of the rapidly developing sciences. As demand of fresh drinking water is increasing, nanotechnology can contribute noticeable development and improvement to water treatment process. This study was aimed to examine synthesis and the antibacterial effect of Nanopolyamidoamine-G7 (NPAMAM-G7) dendrimer on Escherichia Coli (E. Coli), Klebsiella Oxytoca (K. Oxytoca), Pseudomonas Aeruginosa (P. Aeruginosa), Proteus Mirabilis (P. Mirabilis) and Staphylococcus Aureus (S. Aureus) from aqueous solution.
Methods: In this experimental study that has been conducted in August to December 2015 in the laboratory of microbiology of Iran University of Medical Sciences, initially dilution of 103 CFU/ml were prepared from each strain of bacteria. Then different concentrations of dendrimer (0.025, 0.25, 2.5 and 25 µg/ml) in the laboratory temperature (23-25 °C) was added to water. In order to determine the efficiency of dendrimers in removal of bacteria, samples were taken at different times (0, 10, 20, 30, 40, 50 and 60 min) and were cultured on nutrient agar medium. Samples were incubated for 24 hours at 37 °C and then number of colonies were counted.
Results: Antibacterial properties of dendrimers in aqueous solution by increasing the dendrimer concentration and contact time is directly related. At a concentration of 25 μg/ml at 60 minutes all bacteria except S. Aureus, and at 30 minutes, E. Coli and K. Oxytoca bacteria for 100% excluded. The concentration of 2.5 μg/ml at 60 minutes of bacteria, E. Coli, K. Oxytoca and P. Mirabilis are 100% excluded. All concentrations of dendrimers at different times were reduced bacteria in the PAMAM- G7 dendrimer effect on gram-negative bacteria, gram-positive bacteria was better.
Conclusion: The NPAMAM-G7 dendrimer with end amine groups exhibited a positive impact on the removal of standard strains, gram-positive and gram-negative bacteria. Therefore, it is possible to use these nanodendrimers as antibacterial in the future.

Full-Text [PDF 1811 kb]   (2436 Downloads)    
Type of Study: Original Article |

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb